精英家教网 > 初中数学 > 题目详情
10.为了节约用水,某市居民生活用水按级收费,如图是东东家收到的自来水公司水费专用发票.

(1)东东家5月份的用水量为15吨,则这个月的水费为多少?
(2)东东家7月份的用水量为a吨,且用水量的第三级,请用含a的代数式表示他家7月份的水费;
(3)东东家的11月份的用水量少于10月份,且这两个月的用水量均没到第三级,若这两个月总用水42吨,共缴水费108.8元,分别求东东家这两个月的用水量.

分析 (1)由15<20,由总价=单价×数量建立式子求出其解即可;
(2)由条件可以得出东东家7月份的水费=第一级20吨的水费+第一级20吨的水费+超过40吨部分的水费,列出代数式化简即可;
(3)设其中一个月的用水量是x吨,则另一个月为(42-x)吨,分情况讨论:当0≤x≤20和x>20,由10月份的水费+11月份的水费=108.8元建立方程求出其解,进一步求解.

解答 解:(1)15×2.5=37.5(元).
故这个月的水费为37.5元.                    
(2)20×2.5+20×3.45+6.3(a-40)
=50+69+6.3a-252
=6.3a-133(元).
(3)设其中一个月的用水量是x吨,则另一个月为(42-x)吨.根据题意得:
①当0≤x≤20,则2.5x+50+3.45(42-x)=108.8,解得x=18.
故这两个月的用水量分别是18吨,24 吨;
②当两个月用水量都超过大于20小于40时,40×2.5+2×3.45=106.9(元),
106.9元<108.8元,不合题意.

点评 本题考查了代数式表示数的运用,列一元一次方程解实际问题的运用,分类讨论思想的运用,解答时根据总费用=各部分费用之和建立方程是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

7.-$\frac{1}{2}$的倒数是-2;|1-$\sqrt{2}$|=$\sqrt{2}$-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知△ABC是直角三角形,∠ABC=90°,在△ABC外作直角三角形ACE,∠ACE=90°
(1)如图1,过点C作CM⊥AE,垂足为M,连结BM,若AB=AM,求证:BM∥CE;
(2)如图2,延长BC至D,使得CD=BC,连结DE,若AB=BD,∠EAC=45°,AE=$\sqrt{10}$,求四边形ABDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.下列判断正确的是(  )
A.-$\frac{3}{5}$<-$\frac{4}{7}$B.x-1是有理数,它的倒数是$\frac{1}{x-1}$
C.若|a|=|b|,则a=bD.若|a|=-a,则a<0

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图,AB∥CD,OA,OC分别平分∠BAC和∠ACD,OH⊥AC于点H,且OH=4,则AB,CD之间的距离为8.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图所示的几何体,从左面看到的形状图是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,在等腰直角△ACB中,∠ACB=90°,O是斜边AB的中点,点D、E分别在直角边AC、BC上,且∠DOE=90°,DE交OC于点P.则下列结论:①∠AOD=∠COE;②图形中全等的三角形有3对; ③△ABC的面积等于四边形CDOE的面积的2倍;④CD+CE=$\sqrt{2}$OA;⑤AD2+BE2=2OD2,其中正确的结论有(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.阅读下面材料:
学习了三角形全等的判定方法(即“SAS”“ASA”“AAS”“SSS”)和直角三角形全等的判定方法(即“HL”)后,小聪继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究
小聪将命题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E.
小聪的探究方法是对∠B分为“直角、钝角、锐角”三种情况进行探究.
第一种情况:当∠B 是直角时,如图1,△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根据“HL”定理,可以知道Rt△ABC≌Rt△DEF.
第二种情况:当∠B 是锐角时,如图2,BC=EF,∠B=∠E<90°,在射线EM上有点D,使DF=AC,画出符合条件的点D,则△ABC和△DEF的关系是C;
?A.全等        B.不全等           C.不一定全等
第三种情况:当∠B是钝角时,如图3,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E>90°.过点C作AB边的垂线交AB延长线于点M;同理过点F作DE边的垂线交DE延长线于N,根据“ASA”,可以知道△CBM≌△FEN,请补全图形,进而证出△ABC≌△DEF.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.计算(a-2)(-a-2)的结果正确的是(  )
A.a2-4B.a2-4a+4C.4-a2D.2-a2

查看答案和解析>>

同步练习册答案