【题目】如图,直线y=﹣ x+m(m>0)与x轴交于点C,与y轴交于点D,以CD为边作矩形ANCD,点A在x轴上.双曲线y= 经过点B,与直线CD交于点E,则点E的坐标为( )
A.( ,﹣ )
B.(4,﹣ )
C.( ,﹣ )
D.(6,﹣1)
【答案】D
【解析】解:根据题意,直线y=﹣ x+m与x轴交于C,与y轴交于D, 分别令x=0,y=0,
得y=m,x=2m,
即D(0,m),C(2m,0),
又AD⊥DC且过点D,
所以直线AD所在函数解析式为:y=2x+m,
令y=0,得x=﹣ m,
即A(﹣ m,0),
作BH⊥AC于H,
∵四边形ABCD是矩形,
∴AD=BC,∠DAO=∠BCH,
在△AOD和△CHB中
∴△AOD≌△CHB(AAS),
∴BH=OD=m,CH=OA= m,
∴OH= m,
∴B点的坐标为B( m,﹣m)
又B在双曲线双曲线y= (k<0)上,
∴ m(﹣m)=﹣6,
解得m=±2,
∵m>0,
∴m=2,
∴直线CD的解析式为y=﹣ x+2,
解 ,
得 和 ,
故点E的坐标为(6,﹣1),
故选D.
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠B=90°,直线EF分别交两直角边AB、BC与E、F两点,且EF∥AC,P是斜边AC的中点,连接PE,PF,且AB= ,BC= .
(1)当E、F均为两直角边的中点时,求证:四边形EPFB是矩形,并求出此时EF的长;
(2)设EF的长度为x(x>0),当∠EPF=∠A时,用含x的代数式表示EP的长;
(3)设△PEF的面积为S,则当EF为多少时,S有最大值,并求出该最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行.某自行车厂生产的某型号自行车去年销售总额为8万元.今年该型号自行车每辆售价预计比去年降低200元.若该型号车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求该型号自行车去年每辆售价多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】直线y=﹣3x+3与x轴、y轴分别父于A、B两点,点A关于直线x=﹣1的对称点为点C.
(1)求点C的坐标;
(2)若抛物线y=mx2+nx﹣3m(m≠0)经过A、B、C三点,求抛物线的表达式;
(3)若抛物线y=ax2+bx+3(a≠0)经过A,B两点,且顶点在第二象限.抛物线与线段AC有两个公共点,求a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某兴趣小组10名学生在一次数学测试中的成绩如表(满分150分)
分数(单位:分) | 105 | 130 | 140 | 150 |
人数(单位:人) | 2 | 4 | 3 | 1 |
下列说法中,不正确的是( )
A.这组数据的众数是130
B.这组数据的中位数是130
C.这组数据的平均数是130
D.这组数据的方差是112.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点O是正方形ABCD两对角线的交点. 分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.
(1)求证:DE⊥AG;
(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转角(0°< <360°)得到正方形,如图2.
①在旋转过程中,当∠是直角时,求的度数;(注明:当直角边为斜边一半时,这条直角边所对的锐角为30度)
②若正方形ABCD的边长为1,在旋转过程中,求长的最大值和此时的度数,直接写出结果不必说明理由.
图1 图2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学组织学生参加交通安全知识网络测试活动.小王对九年(3)班全体学生的测试成绩进行了统计,并将成绩分为四个等级:优秀、良好、一般、不合格,绘制成如下的统计图(不完整),
请你根据图中所给的信息解答下列问题:
(1)九年(3)班有名学生,并把折线统计图补充完整;
(2)已知该市共有12000名中学生参加了这次交通安全知识测试,请你根据该班成绩估计该市在这次测试中成绩为优秀的人数;
(3)小王查了该市教育网站发现,全市参加本次测试的学生中,成绩为优秀的有5400人,请你用所学统计知识简要说明实际优秀人数与估计人数出现较大偏差的原因;
(4)该班从成绩前3名(2男1女)的学生中随机抽取2名参加复赛,请用树状图或列表法求出抽到“一男一女”的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com