精英家教网 > 初中数学 > 题目详情
如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为

A.       B.        C.        D.
A
如图,取AB的中点E,连接OE、DE、OD,

∵OD≤OE+DE,
∴当O、D、E三点共线时,点D到点O的距离最大,
此时,∵AB=2,BC=1,∴OE=AE=AB=1。
DE=
∴OD的最大值为:。故选A。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

(1)如图,点A、B、C、D在同一条直线上,BE∥DF,∠A=∠F,AB=FD.求证:AE=FC.
(2)如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=5,tanC=,求腰AB的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,正方形纸片ABCD的边长为8,将其沿EF折叠,则图中①②③④四个三角形的周长之和为       

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,在平面上有一半径为1 cm的圆定点A,OA="4" cm.以点A为旋转中心,使圆O分别顺时针旋转90°,逆时针旋转60°,得到圆B和圆C,作出这两个圆.
(1)试问圆B或圆C的圆心与圆O的圆心O的距离是多少?
(2)试问圆B和圆C的圆心的距离是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题


【问题提出】
学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.
【初步思考】
我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.

【深入探究】
第一种情况:当∠B是直角时,△ABC≌△DEF.
(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据       ,可以知道Rt△ABC≌Rt△DEF.
第二种情况:当∠B是钝角时,△ABC≌△DEF.
(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.
第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.
(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)
(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若       ,则△ABC≌△DEF.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若一个多边形的每一个外角都是40°,则这个多边形是(   )
A.六边形B.八边形 C.九边形 D.十边形

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在梯形ABCD中,AD∥BC,∠B=50°,∠C=80°,AE∥CD交BC于点E,若AD=2,BC=5,则边CD的长是
A.B.C.3D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列长度的三条线段,能组成等腰三角形的是(   )
A.1,1,2B.2,2,5C.3,3,5D.3,4,5

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在平面直角坐标系xOy中,直线经过点A,作AB⊥x轴于点B,将△ABO绕点B顺时针旋转得到△BCD,若点B的坐标为(2,0),则点C的坐标为(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案