精英家教网 > 初中数学 > 题目详情
8.如图,AB是⊙O的直径,点C在⊙O上,OD∥AC,交BC于D.若BD=1,则BC的长为2.

分析 由AB为直径易知∠C=90°;因为OD∥AC,所以OD⊥BC,根据垂径定理得BC=2BD.

解答 解:∵AB是⊙O的直径,点C在⊙O上,
∴∠C=90°.
∵OD∥AC,
∴OD⊥BC.
∴BC=2BD=2.
故答案为2.

点评 此题考查了圆周角定理和垂径定理的应用,属基础题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A顺时针方向旋转90°得到△AB′C′
(1)在正方形网格中,画出△AB′C′;
(2)求出四边形BCB′C′的面积;
(3)设点P(a,b)是△ABC边上的一点,点P绕点A顺时针方向旋转90°后的对应点是P′,则点P′的坐标为(b,-a).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,在Rt△ABC中,∠ACB=90°,将边BC沿斜边上的中线CD折叠到CB′,若∠B=48°,则∠ACB′=6°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,在等腰直角△ABC中,∠ACB=90°,AC=BC=$\sqrt{2}$
(1)作⊙O,使它过点A、B、C(要求:尺规作图,保留作图痕迹,不写作法)
(2)在(1)所作的圆中,圆心角∠BOC=90°,圆的半径为1,劣弧$\widehat{BC}$的长为$\frac{1}{2}$π.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.
(1)在方程①3x-1=0,②$\frac{2}{3}$x+1=0,③x-(3x+1)=-5中,不等式组$\left\{\begin{array}{l}{-x+2>x-5}\\{3x-1>-x+2}\end{array}\right.$的关联方程是③;(填序号)
(2)若不等式组$\left\{\begin{array}{l}{x-\frac{1}{2}<1}\\{1+x>-3x+2}\end{array}\right.$的一个关联方程的根是整数,则这个关联方程可以是x-1=0;(写出一个即可)
(3)若方程3-x=2x,3+x=2(x+$\frac{1}{2}$)都是关于x的不等式组$\left\{\begin{array}{l}{x<2x-m}\\{x-2≤m}\end{array}\right.$的关联方程,直接写出m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.有一实物模型如图所示,它的主视图是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.这是课本第二章第5节的一道例题:
例1已知如图1,在△ABC中,AB=AC,点D在BC上,且AD=BD.

求证:∠ADB=∠BAC.
课本旁边有这样的“思考与表述”:
怎么想:
要证∠ADB=∠BAC,
由于∠BAC=∠1+∠2,
∠ADB=∠C+∠2,
只要证∠1=∠C.
只要找与∠1相等且与∠C也相等的角.
猜想∠1=∠B,∠C=∠B.而己知AD=BD,AB=AC.
这种思考方法称为分析法,就是从结论出发,要证什么,需证什么,一步步倒推上去,
直到和已知条件吻合.
试仿照上面的“怎么想”用分析法写出下面这道题的分析过程.
如图2,已知∠ABC=90°,D是直线AB上的点,AD=BC,过点A作AF⊥AB,并截取AF=BD,连接DC,DF,CF.求证:△CDF是等腰直角三角形.
解:怎么想:

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.学校将学生的平时成绩、期中考试、期末考试三项成绩按2:3:5的比例计算学期总成绩.小明这学期的平时成绩为85分,期中考试成绩为80分,若想争取学期总成绩不低于90分,则期末考试的成绩不得低于98分.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.在下列长度的各组线段中,能组成直角三角形的是(  )
A.5,6,7B.$\sqrt{2}$,$\sqrt{5}$,$\sqrt{7}$C.1,4,9D.5,11,12

查看答案和解析>>

同步练习册答案