【题目】在平面直角坐标系xOy中,边长为5的正方形ABCD的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),顶点C. D都在第一象限。
(1)当点A坐标为(4,0)时,求点D的坐标;
(2)求证:OP平分∠AOB;
(3)直接写出OP长的取值范围(不要证明).
【答案】(1)D(7,4);(2)见解析;(3) <OP5.
【解析】
(1)作DM⊥x轴于点M,由A(4,0)可以得出OA=4,由勾股定理就可以求出OB=3,再通过证明△AOB≌△DMA就可以求出AM=OB,DM=OA,从而求出点D的坐标.
(2)过P点作x轴和y轴的垂线,可通过三角形全等,证明OP是角平分线.
(3)因为OP在∠AOB的平分线上,就有∠POA=45°,就有OP= PE,在Rt△APE中运用三角函数就可以表示出PE的范围,从而可以求出OP的取值范围.
(1)作DM⊥x轴于点M,
∴∠AMD=90°.
∵∠AOB=90°,
∴∠AMD=∠AOB.
∵四边形ABCD是正方形,
∴AB=AD,∠BAD=90°,
∴∠OAB+∠DAM=90.
∵∠OAB+∠OBA=90°,
∴∠DAM=∠OBA.
在△DMA和△AOB中,
,
∴△DMA≌△AOB,
∴AM=OB,DM=AO.
∵A(4,0),
∴OA=4,
∵AB=5,在Rt△AOB中由勾股定理得:
OB= =3.
∴AM=3,MD=4,
∴OM=7.
∴D(7,4);
(2)证明:作PE⊥x轴交x轴于E点,作PF⊥y轴交y轴于F点
∵∠BPE+∠EPA=90°,∠EPB+∠FPB=90°,
∴∠FPB=∠EPA,
∵∠PFB=∠PEA,BP=AP,
∴△PBF≌△PAE,
∴PE=PF,
∴点P都在∠AOB的平分线上.
(3)作PE⊥x轴交x轴于E点,作PF⊥y轴交y轴于F点,则PE=h,设∠APE=α.
在直角△APE中,∠AEP=90°,PA=.
∴PE=PAcosα=cosα.
∵顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),
∴0°α<45°,
∴ <cosα1.
∴ <PE,
∵OP= PE,
∴ <OP5.
科目:初中数学 来源: 题型:
【题目】某电视台的一档娱乐性节目中,在游戏PK环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA1、BB1、CC1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.
(1)若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA1的概率;
(2)请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】仙居吾悦广场于年月日开业,商场内两家服装店举行开业大酬宾活动,甲乙两家服装店优惠活动如下表:
购买服装总金额(元) | 不超过元 | 超过元但不超过元的部分 | 元以上的部分 |
优惠幅度 | 打折 | 打折 | 打折 |
乙服装店优惠活动:购买服装总金额每满元减元.
例如:购买总金额满元减元,满元减元,以此类推.
(1)若在两家店购买服装总金额都是元,哪家店实际付款更少?少多少?
(2)若购买服装总金额小于元,选择哪家店购买服装更划算?请通过计算说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AE∥BF,∠A=60°,点P为射线AE上任意一点(不与点A重合),BC,BD分别平分∠ABP和∠PBF,交射线AE于点C,点D.
(1)图中∠CBD= °;
(2)当∠ACB=∠ABD时,∠ABC= °;
(3)随点P位置的变化,图中∠APB与∠ADB之间的数量关系始终为 ,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】【题目】如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.
(1)求证:ED为⊙O的切线;
(2)如果⊙O的半径为,ED=2,延长EO交⊙O于F,连接DF、AF,求△ADF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的( )
A.7:20 B.7:30 C.7:45 D.7:50
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点,网格中有以格点A、B、C为顶点的△ABC,请你根据所学的知识回答下列问题:
(1)求△ABC的面积;(2)判断△ABC的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,直线PQ垂直平分AC,与边AB交于点E,连接CE,过点C作CF∥BA交PQ于点F,连接AF.
(1)求证:四边形AECF是菱形;
(2)若AD=3,AE=5,则求菱形AECF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.
(1)求证:△BDF是等腰三角形;
(2)如图2,过点D作DG∥BE,交BC于点G,连接FG交BD于点O.
①判断四边形BFDG的形状,并说明理由;
②若AB=6,AD=8,求FG的长为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com