【题目】如图,已知AE∥BF,∠A=60°,点P为射线AE上任意一点(不与点A重合),BC,BD分别平分∠ABP和∠PBF,交射线AE于点C,点D.
(1)图中∠CBD= °;
(2)当∠ACB=∠ABD时,∠ABC= °;
(3)随点P位置的变化,图中∠APB与∠ADB之间的数量关系始终为 ,请说明理由.
【答案】(1)60 ;(2)30 ;(3),见解析.
【解析】
(1)根据角平分线的定义只要证明∠CBD∠ABF即可;
(2)想办法证明∠ABC=∠CBP=∠DBP=∠DBF即可解决问题;
(3)∠APB=2∠ADB.可以证明∠APB=∠PBF,∠ADB=∠DBF∠PBF.
(1)∵AE∥BF,∴∠ABF=180°﹣∠A=120°.
又∵BC,BD分别平分∠ABP和∠PBF,∴∠CBD=∠CBP+∠DBP(∠ABP+∠PBF)
∠ABF=60°.
故答案为:60.
(2)∵AE∥BF,∴∠ACB=∠CBF.
又∵∠ACB=∠ABD,∴∠CBF=∠ABD,∴∠ABC=∠ABD﹣∠CBD=∠CBF﹣∠CBD=∠DBF,∴∠ABC=∠CBP=∠DBP=∠DBF,∴∠ABC∠ABF=30°.
故答案为:30.
(3)∠APB=2∠ADB.理由如下:
∵AE∥BF,∴∠APB=∠PBF,∠ADB=∠DBF.
又∵BD平分∠PBF,∴∠ADB=∠DBF∠PBF
∠APB,即∠APB=2∠ADB.
科目:初中数学 来源: 题型:
【题目】如图,在中,
,
于点
,
,
.点
从点
出发,在线段
上以每秒
的速度向点
匀速运动;与此同时,垂直于
的直线
从底边
出发,以每秒
的速度沿
方向匀速平移,分别交
、
、
于点
、
、
,当点
到达点
时,点
与直线
同时停止运动,设运动时间为
秒(
).
(1)当时,连接
、
,求证:四边形
为菱形;
(2)当时,求
的面积;
(3)是否存在某一时刻,使
为以点
或
为直角顶点的直角三角形?若存在,请求出此时刻
的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,矩形ABCD的面积为10cm2,它的两条对角线交于点O1,以AB、AO1为邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交于点O2,同样以AB、AO2为邻边作平行四边形ABC2O2,…,依此类推,则平行四边形ABC5O5的面积为( )
A. 1cm2B. 2cm2C. cm2D.
cm2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】根据爱因斯坦的相对论可知,任何物体的运动速度不能超过光速(3×105km/s),因为一个物体达到光速需要无穷多的能量,并且时光会倒流,这在现实中是不可能的.但我们可让一个虚拟物超光速运动,例如:直线l,m表示两条木棒相交成的锐角的度数为10°,它们分别以与自身垂直的方向向两侧平移时,它们的交点A也随着移动(如图箭头所示),如果两条直线的移动速度都是光速的0.2倍,则交点A的移动速度是光速的_____倍.(结果保留两个有效数字).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知整数a1、a2、a3、a4、……满足下列条件:a1=-1,a2=-|a1+1|,a3=-|a2+2|,a4=-|a3+3|,……,an+1=-|an+n|(n为正整数)依此类推,则a2019的值为( )
A. B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,边长为5的正方形ABCD的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),顶点C. D都在第一象限。
(1)当点A坐标为(4,0)时,求点D的坐标;
(2)求证:OP平分∠AOB;
(3)直接写出OP长的取值范围(不要证明).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx经过点A(﹣1,)及原点,交x轴于另一点C(2,0),点D(0,m)是y轴正半轴上一动点,直线AD交抛物线于另一点B.
(1)求抛物线的解析式;
(2)如图1,连接AO、BO,若△OAB的面积为5,求m的值;
(3)如图2,作BE⊥x轴于E,连接AC、DE,当D点运动变化时,AC、DE的位置关系是否变化?请证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,现有两条乡村公路AB、BC,AB长为1200米,BC长为1600,一个人骑摩托车从A处以20m/s的速度匀速沿公路AB、BC向C处行驶;另一人骑自行车从B处以5m/s的速度从B向C行驶,并且两人同时出发.
(1)求经过多少秒摩托车追上自行车?
(2)求两人均在行驶途中时,经过多少秒两人在行进路线上相距150米?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com