精英家教网 > 初中数学 > 题目详情
12.在等腰三角形ABC中,AB=AC,D是AB延长线上一点DE交BC于点F.
(1)如图(1),若BD=CE,求证:DF=EF;
(2)如图(2),若BD=$\frac{1}{n}$CE,试写出DF和EF之间的数量关系
(3)如图(3),在(2)的条件下,若点E在CA的延长线上,那么(2)中的结论还成立吗?试说明.

分析 (1)作EG∥AB交BC于G,就可以得出∠EGC=∠ABC,∠DBF=∠EGF,∠D=∠GEF,就可以得出△DBF≌△EGF,就可以得出结论;
(2)图(2)过E作EG∥AB交BC于G,根据平行线的性质得到∠EGC=∠ABC,由等腰三角形的性质得到∠ABC=∠C,等量代换得到∠EGC=∠C,根据等腰三角形的判定得到EG=EC,通过△BDF∽△EFG,根据相似三角形的性质得到$\frac{BD}{EG}=\frac{DF}{EF}$,由于BD=$\frac{1}{n}$CE,即可得到$\frac{DF}{EF}=\frac{1}{n}$;
(3)方法同(2).

解答 证明(1):如图(1)作EG∥AB交BC于G,
则∠CGE=∠ABC,∠GEF=∠D,∠DBF=∠EGF.
∵AB=AC,
∴∠ABC=∠C,
∴∠C=∠EGC,
∴CE=EG,
∵CE=BD,
∴BD=GE.
在△DBF和△EGF中,$\left\{\begin{array}{l}{∠D=∠GEF}\\{BD=GE}\\{∠DBF=∠EGF}\end{array}\right.$,
∴△DBF≌△EGF(ASA),
∴DF=EF;

(2)$\frac{DF}{EF}=\frac{1}{n}$,
理由:图(2)过E作EG∥AB交BC于G,
∴∠EGC=∠ABC,
∵AB=AC,
∴∠ABC=∠C,
∴∠EGC=∠C,
∴EG=EC,
∵EG∥AB,
∴△BDF∽△EFG,
∴$\frac{BD}{EG}=\frac{DF}{EF}$,
∵BD=$\frac{1}{n}$CE,
∴BD=$\frac{1}{n}$EG,
∴$\frac{DF}{EF}=\frac{1}{n}$;

(3)成立,如图(3),
过E作EG∥AB交BC于G,
∴∠EGC=∠ABC,
∵AB=AC,
∴∠ABC=∠C,
∴∠EGC=∠C,
∴EG=EC,
∵EG∥AB,
∴△BDF∽△EFG,
∴$\frac{BD}{EG}=\frac{DF}{EF}$,
∵BD=$\frac{1}{n}$CE,
∴BD=$\frac{1}{n}$EG,
∴$\frac{DF}{EF}=\frac{1}{n}$.

点评 本题考查了相似三角形的判定和性质,等腰三角形的性质,平行线的性质,正确作出辅助线是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

2.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①5a+b>0;
②a-b+c>0;③4a+2b+c<0;④(a+c)2<b2.其中,正确结论的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.在画二次函数的图象时列出了下表:
x-101234
y03430-5
观察表格,可以得到许多信息:
(1)抛物线的对称轴是直线x=1;当x=-2时,对应的y值是-5;
(2)我们还发现,在对称轴右侧,当x每增加1个单位时,对应y值除了趋势逐渐变小外,在数量上还存在某种规律,试利用这一规律,直接写出当x=5时,对应的y值是-7;
(3)y≥-5时,x的取值范围是-2≤x≤4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.$|\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}|$=ad-bc,例如$|\begin{array}{l}{2}&{3}\\{4}&{5}\end{array}|$=2×5×4=10-12=-2,再如$|\begin{array}{l}{x}&{2}\\{1}&{4}\end{array}|$=4x-2.按照这种运算的规定,请解答下列问题:
(1)$|\begin{array}{l}{-1}&{2}\\{-2}&{0.5}\end{array}|$=3.5(只填写最后结果).
(2)当x=$\frac{1}{3}$时,$|\begin{array}{l}{x}&{\frac{1}{2}-x}\\{1}&{2}\end{array}|$=$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.用简便方法解下列方程:
(1)3(x+1)-$\frac{1}{3}$(x-1)=2(x+1)-$\frac{1}{2}$(x-1);
(2)$\frac{5}{6}$[$\frac{6}{5}$($\frac{2}{3}$x-1)-2]=x-3;
(3)1-$\frac{1}{5}$(x-$\frac{10-2x}{3}$)=$\frac{x}{2}$-$\frac{1}{3}$(3x-$\frac{3-6x}{2}$).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.等边△ABC的边长为4,点D在AB边上,且CD=$\sqrt{13}$.则tan∠BCD的值为$\frac{3\sqrt{3}}{5}$或$\frac{\sqrt{3}}{7}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.解方程:$\frac{1}{x(x+1)}$+$\frac{1}{(x+1)(x+2)}$+$\frac{1}{(x+2)(x+3)}$=$\frac{1}{x+3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.四边形ABCD的对角线相交于点O,且OA=OB=OC=OD,则它是矩形;若∠AOB=60°,则AB:AC=1:2.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.下列运算中,正确的是(  )
A.4+5a=9aB.6xy-x=6yC.2x2+3x=5x3D.2a2b-2ba2=0

查看答案和解析>>

同步练习册答案