精英家教网 > 初中数学 > 题目详情
如图,直角梯形ABCD中,AD∥BC,∠A=90o,∠C=60°,AD=3cm,BC=9cm.⊙O的圆心O1从点A开始沿折线A—D—C以1cm/s的速度向点C运动,⊙O2的圆心O2从点B开始沿BA边以cm/s的速度向点A运动,⊙O1半径为2cm,⊙O2的半径为4cm,若O1、O2分别从点A、点B同时出发,运动的时间为ts.
(1)请求出⊙O2与腰CD相切时t的值;
(2)在0s<t≤3s范围内,当t为何值时,⊙O1与⊙O2外切?
(1)秒;(2)3秒

试题分析:(1)先设⊙O2运动到E与CD相切,且切点是F;连接EF,并过E作EG∥BC,交CD于G,再过G作GH⊥BC于H,即可得到直角三角形EFG和矩形GEBH.由∠C=60°可得∠CGH=30°,即可得到∠FGE=60°.在Rt△EFG中,根据勾股定理可得EG的值,那么CH=BC-BH=BC-EG.在Rt△CGH中,利用60°的角的正切值可求出GH的值,即可求得结果;
(2)因为0s<t≤3s,所以O1一定在AD上,连接O1O2.利用勾股定理可得到关于t的一元二次方程,解出即可.
(1)如图所示,设点O2运动到点E处时,⊙O2与腰CD相切.过点E作EF⊥DC,垂足为F,则EF=4cm.作EG∥BC,交DC于G,作GH⊥BC,垂足为H.

由直角三角形GEF中,∠EGF+∠GEF=90°,
又∠EGF+∠CGH=90°,
∴∠GEF=∠CGH=30°,
设FG=xcm,则EG=2xcm,又EF=4cm,
根据勾股定理得:,解得

又在直角三角形CHG中,∠C=60°,

则EB=GH=CHtan60°=
秒;
(2)由于0s<t≤3s,所以,点O1在边AD上.如图连接O1O2,则O1O2=6cm.

由勾股定理得
解得(不合题意,舍去).
答:经过3秒,⊙O1与⊙O2外切.
点评:解答本题的关键是注意用含t的代数式来表示线段的长;同时熟记两圆外切时圆心距等于两圆半径的和.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

请利用直尺和圆规,过定点A作⊙O的切线,不写作法,保留尺规作图的痕迹.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某种在同一平面进行传动的机械装置如图1,图2是它的示意图.其工作原理是:滑块Q在平直滑道l上可以左右滑动,在Q滑动的过程中,连杆PQ也随之运动,并且PQ带动连杆OP绕固定点O摆动.在摆动过程中,两连杆的接点P在以OP为半径的⊙O上运动.数学兴趣小组为进一步研究其中所蕴含的数学知识,过点O作OH ⊥l于点H,并测得OH = 4 dm,PQ = 3 dm,OP = 2 dm.解决问题

(1)点Q与点O间的最小距离是      dm;点Q与点O间的最大距离是      dm;点Q在l上滑到最左端的位置与滑到最右端位置间的距离是      分米.
(2)如图3,小明同学说:“当点Q滑动到点H的位置时,PQ与⊙O是相切的.”你认为他的判断对吗?为什么?

(3)①小丽同学发现:“当点P运动到OH上时,点P到l的距离最小.”事实上,还存在着点P到l距离最大的位置,此时,点P到l的距离是      dm;
②当OP绕点O左右摆动时,所扫过的区域为扇形,求这个扇形面积最大时圆心角的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,的切线,切点分别为上一点,若, 则(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

⊙O1和⊙O2的半径分别为3cm和5cm,若O1O2=8cm,则⊙O1和⊙O2的位置关系是
A.外切B.相交C.内切D.内含

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

圆O的半径为6cm,P是圆O内一点,OP=2cm,那么过点P的最短弦的长等于   

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若圆锥侧面积是底面积的2倍,则这个圆锥的侧面展开图的圆心角是(      )
A.120?B.135?C.150?D.180?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知扇形的圆心角为240º,面积为πcm2.
(1)求扇形的弧长;
(2)若把此扇形卷成一个圆锥,则这个圆锥的轴截面面积是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,一块三角形绿化园地,三个角都做有半径为R的圆形喷水池,则这三个喷水池占去的绿化园地(即阴影部分)的面积为
A.B.C.D.不能确定

查看答案和解析>>

同步练习册答案