【题目】在平面直角坐标系上,已知点A(8,4),AB⊥y轴于B,AC⊥x轴于C,直线y=x交AB于D.
(1)直接写出B、C、D三点坐标;
(2)若E为OD延长线上一动点,记点E横坐标为a,△BCE的面积为S,求S与a的关系式;
(3)当S=20时,过点E作EF⊥AB于F,G、H分别为AC、CB上动点,求FG+GH的最小值.
【答案】(1)B(0,4),C(8,0),D(4,4).(2)S=6a﹣16.(3)2
【解析】
(1)首先证明四边形ABOC是矩形,再根据直线y=x是第一象限的角平分线,可得OB=BD,延长即可解决问题;
(2)根据S=S△OBE+S△OEC﹣S△OBC计算即可解决问题;
(3)首先确定点E坐标,如图二中,作点F关于直线AC的对称点F′,作F′H⊥BC于H,交AC于G.此时FG+GH的值最小;
解:(1)∵AB⊥y轴于B,AC⊥x轴于C,
∴∠ABO=∠ACO=∠COB=90°,
∴四边形ABOC是矩形,
∵A(8,4),
∴AB=OC=8,AC=OB=4,
∴B(0,4),C(8,0),
∵直线y=x交AB于D,
∴∠BOD=45°,
∴OB=DB=4,
∴D(4,4);
(2)由题意E(a,a),
∴S=S△OBE+S△OEC﹣S△OBC=×4×a+×8×a﹣×4×8=6a﹣16;
(3)当S=20时,20=6a﹣16,
解得a=6,
∴E(6,6),
∵EF⊥AB于F,
∴F(6,4),
如图二中,作点F关于直线AC的对称点F′,作F′H⊥BC于H,交AC于G.此时FG+GH的值最小.
∵∠ABC=∠F′BH,∠BAC=∠F′HB,
∴△ABC∽△HBF′,
∴,
∵AC=4,BC==4,BF′=AB+AF′=8+2=10,
∴,
∴F′H=2,
∴FG+GH的最小值=F′H=2.
科目:初中数学 来源: 题型:
【题目】下列命题正确的是( )
A.方程x2-4x+2=0无实数根;
B.两条对角线互相垂直且相等的四边形是正方形
C.甲、乙、丙三人站成一排合影留念,则甲、乙二人相邻的概率是
D.若 是反比例函数,则k的值为2或-1。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在下列条件中:①∠A+∠B=∠C,②∠A∶∠B∶∠C=1∶5∶6,③∠A=90°-∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有 ( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示把多块大小不同的30°直角三角板,摆放在平面直角坐标系中,第一块三角板AOB的一条直角边与x轴重合且点A的坐标为(2,0),∠ABO=30°;第二块三角板的斜边BB1与第一块三角板的斜边AB垂直且交x轴于点B1;第三块三角板的斜边B1B2与第二块三角板的斜边BB1垂直且交y轴于点B2;第四块三角板斜边B2B3与第三块三角板的斜边B1B2垂直且交x轴于点B3;…按此规律继续下去,则点B2018的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“十一”国庆节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.
(1)设每件童装降价x元时,每天可销售件,每件盈利元;(用x的代数式表示)
(2)每件童装降价多少元时,平均每天赢利1200元.
(3)要想平均每天赢利2000元,可能吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校,如图所示是小明从家到学校这一过程中所走的路程 s(米)与时间 t(分)之间的关系.
(1)小明从家到学校的路程共 米,从家出发到学校,小明共用了 分钟;
(2)小明修车用了多长时间?
(3)小明修车以前和修车后的平均速度分别是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】据说我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题: 一个数是 59319,希望求出它的立方根.华罗庚脱口而出:39. 邻座的乘客十分惊奇,忙问计算的奥妙. 你知道华罗庚是怎样计算的吗?请按照下面的问题试一试:
(1)由,试确定 是 __________位数;
(2)由 19683 个位数是 3,试确定 个位数是 ________________;
(3)如果划去 19683 后面的三位数 683 得到数 19 ,而 ,由此你能确定十位 的数字是___________ ;
(4) 用上述方法确定 110592 的立方根是_______________ .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com