精英家教网 > 初中数学 > 题目详情
20.$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{n(n-1)}$=(1-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{4}$)+…+($\frac{1}{n}$-$\frac{1}{n+1}$)=1-$\frac{1}{n+1}$.请你根据此知识解方程$\frac{x}{1×2}$+$\frac{x}{2×3}$+$\frac{x}{3×4}$+…+$\frac{x}{2014×2015}$=2014,你解得的结果是x=2015.

分析 所求方程左边利用拆项法变形,计算即可求出解.

解答 解:所求方程整理得:x(1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{2014}$-$\frac{1}{2015}$)=2014,即x(1-$\frac{1}{2015}$)=2014,
解得:x=2015,
故答案为:x=2015

点评 此题考查了分式的加减法,以及解一元一次方程,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

10.下列命题是真命题的是(  )
A.两直线平行,同旁内角相等
B.三角形的一个外角大于任何一个内角
C.三角形三条边的垂直平分线相交于一点,且这一点到三边的距离相等
D.两角分别相等且其中一组等角的对边相等的两个三角形全等

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.点A(3,-1)关于原点的对称点A′的坐标是(  )
A.(-3,-1)B.(3,1)C.(-3,1)D.(-1,3)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.三角形ABC三边a,b,c满足$\left\{\begin{array}{l}{{a}^{2}-3a-2b=-25}\\{{b}^{2}-6b-6c=-16}\\{{c}^{2}-3a-4c=-9}\end{array}\right.$,则△ABC为(  )
A.等腰三角形B.等边三角形C.锐角三角形D.直角三角形

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.机动车尾气污染是导致城市空气质量恶化的重要原因.为解决这个问题,某市实验将现有公共汽车改装成天然气燃料汽车(称为“环保汽车”),按照计划,该市今后两年内将全市的这种环保汽车由目前的325辆增加到637辆,求这种环保汽车平均每年增加的百分率.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.999+(-999)×(-999)+999-999999=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知如图所示,过正方形ABCD的顶点A作对角线BD的平行线,在这条直线上取点E,使BE=BD,且BE与AD交于点F,求证:DE=DF.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,在平面直角坐标系中,直角梯形ABCD的直角顶点D与原点重合,另一直角顶点A在y轴的正半轴上,点B、C的坐标分别为B(12,8)、C(14,0),AD为⊙E的直径.点M、N分别从A、C两点同时出发做匀速运动,其中点M沿AB向终点B运动,速度为每秒1个单位;点N沿CD向终点D运动,速度为每秒3个单位.当这两点中有一点到达自己的终点时,另一点也停止运动.
(1)设点M、N的运动时间为t秒,当t为何值时,四边形MBCN为平行四边形?
(2)在(1)的条件下,连结DM与⊙E相交于点P,求弦DP的长;
(3)在运动过程中,是否存在使直线MN与⊙E相切的情形?如果存在,请求出直线MN.如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.基本模型
如图1,点A,F,B在同一直线上,若∠A=∠B=∠EFC=90°,易得△AFE∽△BCF.
(1)模型拓展:
如图2,点A,F,B在同一直线上,若∠A=∠B=∠EFC,求证:△AFE∽△BCF;
(2)拓展应用:如图3,AB是半圆⊙O的直径,弦长AC=BC=4$\sqrt{2}$,E,F分别是AC,AB上的一点,若∠CFE=45°.若设AE=y,BF=x,求出y与x的函数关系式及y的最大值;
(3)拓展提升:如图4,在平面直角坐标系柳中,抛物线y=-$\frac{1}{3}$(x+4)(x-6)与x轴交于点A,C,与y轴交于点B,抛物线的对称轴交线段BC于点E,探求线段AB上是否存在点F,使得∠EFO=∠BAO?若存在,求出BF的长;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案