精英家教网 > 初中数学 > 题目详情

【题目】如图,ABC中,AB=AC,以AB为直径的⊙OBC相交于点D,与CA的延长线相交于点E,过点DDFAC于点F.

(1)试说明DF是⊙O的切线;

(2)AC=3AE=6,求tanC

【答案】(1)见解析(2)

【解析】

(1)连接OD,根据等边对等角得出∠B=∠ODB,∠B=∠C,得出∠ODB=∠C,证得OD∥AC,证得OD⊥DF,从而证得DF是⊙O的切线;

(2)由AC=3AE可得AB=AC=3AE,EC=4AE;连结BE,由AB是直径可知∠AEB=90°,根据勾股定理求出BE,解直角三角形求出即可.

(1)连接OD,

∵OB=OD,
∴∠B=∠ODB,
∵AB=AC,
∴∠B=∠C,
∴∠ODB=∠C,
∴OD∥AC,
∵DF⊥AC,
∴OD⊥DF,点D在⊙O上,
∴DF是⊙O的切线;
(2)连接BE,
∵AB是直径,
∴∠AEB=90°,
∵AB=AC,AC=3AE,
∴AB=3AE,CE=4AE,

∴BE==2AE

Rt△BEC中,tanC=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为落实素质教育要求,促进学生全面发展,我市某中学2014年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2016年投资18.59万元.

(1)求该学校为新增电脑投资的年平均增长率;

(2)2014年到2016年,该中学三年为新增电脑共投资多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线AE:与抛物线相交于另一点E,点D为抛物线的顶点.

(1)求直线BC的解析式及点E的坐标;

(2)如图2,直线AE上方的抛物线上有一点P,过点PPFBC于点F,过点P作平行于轴的直线交直线BC于点G,当△PFG周长最大时,在轴上找一点M,在AE上找一点N,使得值最小,请求出此时N点的坐标及的最小值;

(3)在第(2)问的条件下,点R为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S,使以点N,E,R,S为顶点的四边形为矩形,若存在,请直接写出点S的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线与坐标轴分别交于点AB,与直线交于点C.在线段OA上,动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,同时动点P从点A出发向点O做匀速运动,当点PQ其中一点停止运动时,另一点也停止运动.分别过点PQx轴的垂线,交直线ABOC于点EF,连接EF.若运动时间为t秒,在运动过程中四边形PEFQ总为矩形(点PQ重合除外)。

1)求点P运动的速度是多少?

2)当t为多少秒时,矩形PEFQ为正方形?

3)当t为多少秒时,矩形PEFQ的面积S最大?并求出最大值。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图Rt△ABCC90°矩形DEFG的顶点GF分别在ACBCDEAB

1求证ADG∽△FEB

2AG5AD4BE的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线是足球场的底线,是球门,点是射门点,连接叫做射门角.

(1)如图,点是射门点,另一射门点在过三点的圆外(未超过底线).证明:

(2)如图经过球门端点,直线,垂足为且与相切与点于点,连接,求此时一球员带球沿直线向底线方向运球时最大射门角的度数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数的图象与反比例函数的图象交于点P,点P在第一象限.PAx轴于点APBy轴于点B.一次函数的图象分别交轴、轴于点CD,且SPBD=4

1)求点D的坐标;

2)求一次函数与反比例函数的解析式;

3)根据图象写出当时,一次函数的值大于反比例函数的值的的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),已知点G在正方形ABCD的对角线AC上,GEBC,垂足为点E,GFCD,垂足为点F.

(1)证明与推断:

①求证:四边形CEGF是正方形;

②推断:的值为   

(2)探究与证明:

将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AGBE之间的数量关系,并说明理由:

(3)拓展与运用:

正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CGAD于点H.若AG=6,GH=2,则BC=   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】基本事实:若ab=0,则a=0或b=0.一元二次方程x2-x-2=0可通过因式分解化为x-2)(x+1=0,由基本事实得x-2=0或x+1=0,即方程的解为x=2或x=-1.

1、试利用上述基本事实,解方程:2x2-x=0:

2、若x2+y2)(x2+y2-1-2=0,求x2+y2的值.

查看答案和解析>>

同步练习册答案