精英家教网 > 初中数学 > 题目详情

【题目】如图,直线是足球场的底线,是球门,点是射门点,连接叫做射门角.

(1)如图,点是射门点,另一射门点在过三点的圆外(未超过底线).证明:

(2)如图经过球门端点,直线,垂足为且与相切与点于点,连接,求此时一球员带球沿直线向底线方向运球时最大射门角的度数

【答案】(1)证明见解析;(2)

【解析】

(1)由同弧所对的圆周角相等可得:∠ACB=∠APB,再根据三角形外角大于不相邻的内角即可解答;

(2)由垂径定理可得AE=EB=AB,∠EOB=∠AOB;在Rt△OBE再由OB =2a,EB= a,可得∠EOB=30°,∠AOB=2∠EOB=60°,根据圆周角定理可得结果.

解:(1)证明:

连接BC,∵∠ACB=∠APB(同弧所对的圆周角相等)

∠ACB(三角形外角大于不相邻的内角)

(2)当球员运动到点Q时,射门角最大.

∵OE⊥AB,

∴AE=EB=AB=×2a=a,EC=EB+BC=2a,∠EOB=∠AOB

连接AQ、BQ,由题意得四边形OQCE是矩形,OQ=EC=2a=OB,

Rt△OBE中,∵OB =2a,EB= a

∴∠EOB=30°,∠AOB=2∠EOB=60°

∴∠AQB=∠AOB=30°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,在平面直角坐标系xOy中,直线ABx轴交于点A﹣20),与反比例函数在第一象限内的图象的交于点B2n),连接BO,若SAOB=4

1)求该反比例函数的解析式和直线AB的解析式;

2)若直线ABy轴的交点为C,求OCB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D竖起标杆DE,使得点E与点CA共线.

已知:CBADEDAD,测得BC=1mDE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtAOBDOC,AOB=COD=90°,MOA的中点,OA=6,OB=8,CODO点旋转,连接AD,CB交于P,连接MP,MP的最小值____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,AB=AC,以AB为直径的⊙OBC相交于点D,与CA的延长线相交于点E,过点DDFAC于点F.

(1)试说明DF是⊙O的切线;

(2)AC=3AE=6,求tanC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学选拔一名青年志愿者:经笔试、面试,结果小明和小丽并列第一.评委会决定通过抓球来确定人选.规则如下:在不透明的布袋里装有除颜色之外均相同的2个红球和1个绿球,小明先取出一个球,记住颜色后放回,然后小丽再取出一个球.若两次取出的球都是红球,则小明胜出;若两次取出的球是一红一绿,则小丽胜出.你认为这个规则对双方公平吗?请用列表法或画树状图的方法进行分析.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在正方形ABCD中,GCD边中点,连接AG并延长交BC边的延长线于E点,对角线BDAGF点.已知FG=2,则线段AE的长度为(  )

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,DE分别是AB,AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连CF

(1)求证:四边形BCFE是菱形;

(2)若CE=6,∠BEF=120°,求菱形BCFE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线开口向上且经过点,双曲线经过点,给出下列结论:c是关于x的一元二次方程的两个实数根;其中正确结论是______填写序号

查看答案和解析>>

同步练习册答案