精英家教网 > 初中数学 > 题目详情

【题目】某中学选拔一名青年志愿者:经笔试、面试,结果小明和小丽并列第一.评委会决定通过抓球来确定人选.规则如下:在不透明的布袋里装有除颜色之外均相同的2个红球和1个绿球,小明先取出一个球,记住颜色后放回,然后小丽再取出一个球.若两次取出的球都是红球,则小明胜出;若两次取出的球是一红一绿,则小丽胜出.你认为这个规则对双方公平吗?请用列表法或画树状图的方法进行分析.

【答案】这个规则对双方公平.

【解析】

直接利用树状图法列举出所有的可能,注意小明摸出一个球,记下颜色后放回搅动,然后小丽再取出一个球,再分别求出两次取出的球都是红球,两次取出的球是一红一绿的可能性,再比较即可求解.

解:如图所示:

一共9种情况,其中两次取出的球都是红球的可能性是;两次取出的球是一红一绿的可能性是

故这个规则对双方公平.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,点HDC上一点,BDAH交于点OABO为等边三角形,点E在线段AO上,ODOE,连接BE,点FBE的中点,连接AF并延长交BC于点G,且∠GAD60°

1)若CH2AB4,求BC的长;

2)求证:BDAB+AE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】求证:相似三角形面积的比等于相似比的平方.(请根据题意画出图形,写出已知,求证并证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.

请根据图中信息解答下列问题:

(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;

(2)求恒温系统设定的恒定温度;

(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线是足球场的底线,是球门,点是射门点,连接叫做射门角.

(1)如图,点是射门点,另一射门点在过三点的圆外(未超过底线).证明:

(2)如图经过球门端点,直线,垂足为且与相切与点于点,连接,求此时一球员带球沿直线向底线方向运球时最大射门角的度数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB=AD,那么添加下列一个条件后,仍无法判定ABC≌△ADC的是(  )

A. CB=CD B. BAC=DAC C. BCA=DCA D. B=D=90°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=﹣x+1与两坐标轴分别交于AB两点,将线段OA分成n等份,分点分别为P1P2P3,…,Pn1,过每个分点作x轴的垂线分别交直线AB于点T1T2T3,…,Tn1,用S1S2S3,…,Sn1分别表示RtT1OP1RtT2P1P2,…,RtTn1Pn2Pn1的面积,则S1+S2+S3+…+Sn1=__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题提出:如果一个多边形的各个顶点均在另一个多边形的边上,则称这个多边形为另一多边形的内接多边形

问题探究:

(1)如图1,正方形PEFG的顶点EF在等边三角形ABC的边AB上,顶点PAC边上.请在等边三角形ABC内部,以A为位似中心,作出正方形PEFG的位似正方形P'E'F'G',且使正方形P'E'F'G'的面积最大(不写作法)

(2)如图2,在边长为4正方形ABCD中,画出一个面积最大的内接正三角形,并求此最大内接正三角形的面积

拓展应用:

(3)如图3,在边长为4的正方形ABCD中,能不能截下一个面积最大的直角三角形,并使其三边比为3:4:5,若能,请求出此直角三角形的最大面积,若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】音乐喷泉(图1)可以使喷水造型随音乐的节奏起伏变化而变化.某种音乐喷泉形状如抛物线,设其出水口为原点,出水口离岸边18m,音乐变化时,抛物线的顶点在直线y=kx上变动,从而产生一组不同的抛物线(图2),这组抛物线的统一形式为y=ax2+bx.

(1)若已知k=1,且喷出的抛物线水线最大高度达3m,求此时a、b的值;

(2)若k=1,喷出的水恰好达到岸边,则此时喷出的抛物线水线最大高度是多少米?

(3)若k=3,a=﹣,则喷出的抛物线水线能否达到岸边?

查看答案和解析>>

同步练习册答案