【题目】如图所示,在完全重合放置的两张矩形纸片中,,,将上面的矩形纸片折叠,使点与点重合,折痕为,点的对应点为,连接,则图中阴影部分的面积为( )
A. B. 6 C. D.
【答案】C
【解析】
由于AF=CF,则在Rt△ABF中由勾股定理求得AF的值,证得△ABF≌△AGE,有AE=AF,即ED=AD-AE,再由直角三角形的面积公式求得Rt△AGE中边AE上的高的值,即可计算阴影部分的面积.
由题意知,AF=FC,AB=CD=AG=4,BC=AD=8,
在Rt△ABF中,由勾股定理知AB2+BF2=AF2,即42+(8-AF)2=AF2,
解得AF=5,
∵∠BAF+∠FAE=∠FAE+∠EAG=90°,
∴∠BAF=∠EAG,
∵∠B=∠AGE=90°,AB=AG,
∴△BAF≌△GAE,
∴AE=AF=5,ED=GE=3,
∵S△GAE=AGGE=AEAE边上的高,
∴AE边上的高=,
∴S△GED=EDAE边上的高=×3×=,
故选C.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连接AE、DE、DC。
(1)求证:△ABE≌△CBD;
(2)若∠CAE=30°,求∠BCD的度数。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC、∠ACB的平分线交于点O,若∠A=40°,则∠BOC的度数为( )
A.40°B.80°C.100°D.110°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,点、分别在边、上,如果,且,那么下列说法中,错误的是( )
A. △ADE∽△ABC B. △ADE∽△ACD
C. △ADE∽△DCB D. △DEC∽△CDB
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中.
利用尺规作图,在BC边上求作一点P,使得点P到AB的距离的长等于PC的长;
利用尺规作图,作出中的线段PD.
要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于F,连接DE.
(1)求证:△ADE≌△CED
(2)若AD=4,AB=8,求△ACF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】正方形在坐标系中的位置如图所示,将正方形沿轴翻折一次,再沿轴翻折一次,然后向右平移个单位记作:图形的一次完整变化,图形经历次这样完整的变化后,点到达的位置坐标为( )
A. (-1,-4) B. (2,4) C. (-1,-4) D. (1,4)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2+bx+c过点A(﹣4,﹣3),与y轴交于点B,对称轴是x=﹣3,请解答下列问题:
(1)求抛物线的解析式.
(2)若和x轴平行的直线与抛物线交于C,D两点,点C在对称轴左侧,且CD=8,求△BCD的面积.注:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,AB=AC,利用直尺和圆规,根据下列要求作图(保留作图痕迹,不要求写作法),并根据要求填空:
(1)作∠B的平分线BD,交AC于点D;
(2)作线段AB的垂直平分线EF,交AB于点E,交AC于点F;
(3)如果点F与点D重合,则∠A= °.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com