精英家教网 > 初中数学 > 题目详情

【题目】如图,在中.

利用尺规作图,在BC边上求作一点P,使得点PAB的距离的长等于PC的长;

利用尺规作图,作出中的线段PD.

要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑

【答案】作图见解析; (2)作图见解析.

【解析】

由点PAB的距离的长等于PC的长知点P平分线上,再根据角平分线的尺规作图即可得以点A为圆心,以任意长为半径画弧,与AC、AB分别交于一点,然后分别以这两点为圆心,以大于这两点距离的一半长为半径画弧,两弧交于一点,过点A及这个交点作射线交BC于点P,P即为要求的点)

根据过直线外一点作已知直线的垂线的尺规作图即可得以点P为圆心,以大于点PAB的距离为半径画弧,与AB交于两点,分别以这两点为圆心,以大于这两点间距离一半长为半径画弧,两弧在AB的一侧交于一点,过这点以及点P作直线与AB交于点D,PD即为所求)

如图,点P即为所求;

如图,线段PD即为所求.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,DEABE,DFACF,若BD=CD、BE=CF.

(1)求证:AD平分∠BAC;

(2)直接写出AB+ACAE之间的等量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们在学习实数时画了这样一个图,即以数轴上的单位长为‘1’的线段作一个正方形,然后以原点O为圆心,正方形的对角线长为半径画弧交数轴于点A”,请根据图形回答下列问题:

(1)线段OA的长度是多少?(要求写出求解过程)

(2)这个图形的目的是为了说明什么?

(3)这种研究和解决问题的方式体现了 的数学思想方法.(将下列符合的选项序号填在横线上)

A.数形结合 B.代入 C.换元 D.归纳

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=x2x+2x轴交于AB两点,与y轴交于点C

1)求点ABC的坐标;

2)点E是此抛物线上的点,点F是其对称轴上的点,求以ABEF为顶点的平行四边形的面积;

3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】6分)在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,表是活动进行中的一组统计数据:

摸球的次数n

100

150

200

500

800

1000

摸到白球的次数m

68

109

136

345

368

701

摸到乒乓球的频率

0.68

0.73

0.68

0.69

0.70

0.70

1)请估计:当n很大时,摸到白球的频率将会接近________

2)假如你去摸一次,你摸到白球的概率是_______,摸到黑球的概率是_______

3)试估算口袋中黑、白两种颜色的球各有多少只?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是( )

A. B. 2 C. 2 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点DDEAB于点E.

(1)求证:△ACD≌△AED;

(2)若∠B=30°,CD=2,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD的对角线相交于点O,AE平分∠BAD交BC于E, 若∠CAE=15°则∠BOE=(

A. 30° B. 45° C. 60° D. 75°

查看答案和解析>>

同步练习册答案