【题目】如图,已知梯形中,,,是边上的点,且,交于点.
求证:;
当时,求证:.
【答案】(1)详见解析;(2)详见解析
【解析】
(1)由一线三等角,可得,故.
(2)只要证明四边形ADEB是平行四边形即可解决问题.
(1)∵AD∥BC,
∴∠DAC=∠ACB,
∵AB=AC,
∴∠B=∠ACB,
∴∠DAF=∠B,
∵∠AEC=∠AED+∠DEC=∠B+∠BAE,∠AED=∠CAD=∠ACB,
∴∠DEC=∠BAE,
∵AD∥BC,
∴∠DEC=∠ADF,
∴∠BAE=∠ADF,
∴△ABE∽△DAF;
(2)∵ACFC=AEEC,AC=AB,
∴ABFC=AEEC,
∴,
∵∠B=∠FCE,∠BAE=∠FEC,
∴△BAE∽△CEF,
∴,
∴,
∴FC=EF,
∴∠FEC=∠FCE,
∵∠FCE=∠B,
∴∠B=∠FEC,
∴AB∥DE,
∵AD∥BE,
∴四边形ADEB是平行四边形,
∴AD=BE.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+3(a≠0)的对称轴为直线x=﹣1,抛物线交x轴于A、C两点,与直线y=x﹣1交于A、B两点,直线AB与抛物线的对称轴交于点E.
(1)求抛物线的解板式.
(2)点P在直线AB上方的抛物线上运动,若△ABP的面积最大,求此时点P的坐标.
(3)在平面直角坐标系中,以点B、E、C、D为顶点的四边形是平行四边形,请直接写出符合条件点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(题文)如图,在矩形ABCD中,点E是AD上的一个动点,连接BE,作点A关于BE的对称点F,且点F落在矩形ABCD的内部,连结AF,BF,EF,过点F作GF⊥AF交AD于点G,设 =n.
(1)求证:AE=GE;
(2)当点F落在AC上时,用含n的代数式表示的值;
(3)若AD=4AB,且以点F,C,G为顶点的三角形是直角三角形,求n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了加强学生的安全意识,某校组织了学生参加安全知识竞赛,从中抽取了部分学生成绩进行统计,并按照成绩从低到高分成A,B,C,D,E五个小组,绘制统计图如下(未完成),解答下列问题:
(1)样本容量为 ,频数分布直方图中a= ;
(2)扇形统计图中D小组所对应的扇形圆心角为n°,求n的值并补全频数分布直方图;
(3)若成绩在80分以上(不含80分)为优秀,全校共有2000名学生,估计成绩优秀的学生有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,C、D是以AB为直径的⊙O上的点,,弦CD交AB于点E.
(1)当PB是⊙O的切线时,求证:∠PBD=∠DAB;
(2)求证:BC2﹣CE2=CEDE;
(3)已知OA=4,E是半径OA的中点,求线段DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,其中红球有个,若从中随机摸出一个球,这个球是白球的概率为.
()请直接写出袋子中白球的个数.
()随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小巷左右两侧是竖直的墙,一架梯子AC斜靠在右墙,测得梯子顶端距离地面AB=2米,梯子与地面夹角α的正弦值sinα=0.8.梯子底端位置不动,将梯子斜靠在左墙时,顶端距离地面2.4米,则小巷的宽度为( )
A. 0.7米B. 1.5米
C. 2.2米D. 2.4米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店经营一种文化衫,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件文化衫售价不能高于40元.设每件文化衫的销售单价上涨了元时(为正整数),月销售利润为元.
(1)求与的函数关系式并直接写出自变量的取值范围.
(2)每件文化衫的售价定为多少元时可使月销售利润最大?最大的月利润是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com