精英家教网 > 初中数学 > 题目详情

【题目】如图,C、D是以AB为直径的O上的点,,弦CD交AB于点E.

(1)当PB是O的切线时,求证:∠PBD=∠DAB;

(2)求证:BC2﹣CE2=CEDE;

(3)已知OA=4,E是半径OA的中点,求线段DE的长.

【答案】(1)证明见解析(2)证明见解析(3)

【解析】

(1)由AB是⊙O的直径知∠BAD+ABD=90°,由PB是⊙O的切线知∠PBD+ABD=90°,据此可得答案;

(2)连接OC,设圆的半径为r,则OA=OB=OC=r,证ADE∽△CBEDECE=AEBE=r2-OE2,由知∠AOC=BOC=90°,根据勾股定理知CE2=OE2+r2、BC2=2r2,据此得BC2-CE2=r2-OE2,从而得证;

(3)先求出BC=4、CE=2,根据BC2-CE2=CEDE计算可得.

(1)AB是⊙O的直径,

∴∠ADB=90°,即∠BAD+ABD=90°,

PB是⊙O的切线,

∴∠ABP=90°,即∠PBD+ABD=90°,

∴∠BAD=PBD;

(2)∵∠A=C、AED=CEB,

∴△ADE∽△CBE,

,即DECE=AEBE,

如图,连接OC,

设圆的半径为r,则OA=OB=OC=r,

DECE=AEBE=(OA﹣OE)(OB+OE)=r2﹣OE2

∴∠AOC=BOC=90°,

CE2=OE2+OC2=OE2+r2,BC2=BO2+CO2=2r2

BC2﹣CE2=2r2﹣(OE2+r2)=r2﹣OE2

BC2﹣CE2=DECE;

(3)OA=4,

OB=OC=OA=4,

BC==4

又∵E是半径OA的中点,

AE=OE=2,

CE===2

BC2﹣CE2=DECE,

(42﹣(22=DE2

解得:DE=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.

(1)求证:ΔABC△DEF;

(2)若∠A=55°,B=88°,求∠F的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一次寻宝人找到了如图所示的两个标志点A(2,3),B(4,1),A,B两点到宝藏点的距离都是,则宝藏点的坐标是(  )

A. (1,0) B. (5,4) C. (1,0)或(5,4) D. (0,1)或(4,5)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点A,且当钟面显示3点30分时,分针垂直于桌面,A点距桌面的高度为10公分.如图2,若此钟面显示3点45分时,A点距桌面的高度为16公分,则钟面显示3点50分时,A点距桌面的高度为多少公分()

A. B. 16+π C. 18 D. 19

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个正方形AOBC各顶点的坐标分别为A03),O00),B30),C33).若以原点为位似中心,将这个正方形的边长缩小为原来的,则新正方形的中心的坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:已知点A、B是反比例函数y=﹣上在第二象限内的分支上的两个点,点C(0,3),且△ABC满足AC=BC,∠ACB=90°,则线段AB的长为__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某蓄水池的排水管每小时排水8立方米,6小时可将满池水全部排空.

(1)蓄水池的容积是多少?

(2)如果每小时排水量用Q表示,求排水时间tQ的函数关系式.

(3)如果5小时内把满池水排完,那么每小时排水量至少是多少?

(4)已知排水管最大排水量是每小时12立方米,那么最少要多少小时才能将满池水全部排空?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为庆祝祖国70周年华诞,阳光超市销售甲、乙两种庆祝商品,该超市若同时购进甲、乙两种商品各10件共花费400;若购进甲种商品30件,购进乙种商品15件,将用去750元;

1)求甲、乙两种商品每件的进价;

2)由于甲、乙两种商品受到市民欢迎,十一月份超市决定购进甲、乙两种商品共80件,且保持(1)的进价不变,已知甲种商品每件的售价为15元,乙种商品每件的售价40元,要使十一月份购进的甲、乙两种商品共80件全部销售完的总利润不少于600元,那么该超市最多购进甲种商品多少件?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向的B处,求此时轮船所在的B处与灯塔P的距离.(参考数据:≈2.449,结果保留整数)

查看答案和解析>>

同步练习册答案