【题目】为庆祝祖国70周年华诞,阳光超市销售甲、乙两种庆祝商品,该超市若同时购进甲、乙两种商品各10件共花费400元;若购进甲种商品30件,购进乙种商品15件,将用去750元;
(1)求甲、乙两种商品每件的进价;
(2)由于甲、乙两种商品受到市民欢迎,十一月份超市决定购进甲、乙两种商品共80件,且保持(1)的进价不变,已知甲种商品每件的售价为15元,乙种商品每件的售价40元,要使十一月份购进的甲、乙两种商品共80件全部销售完的总利润不少于600元,那么该超市最多购进甲种商品多少件?
【答案】(1)甲种商品每件的进价为10元,乙种商品每件的进价为30元;(2)该超市最多购进甲种商品40件
【解析】
(1)设甲种商品每件的进价为x元,乙种商品每件的进价为y元,根据“甲、乙两种商品各10件共花费400元;若购进甲种商品30件,购进乙种商品15件,将用去750元”列二元一次方程组求解可得;
(2)设购进甲种商品m件,则乙种商品购进(80-m)件,根据“80件全部销售完的总利润不少于600元”列不等式求解可得.
解:(1)设甲种商品每件的进价为x元,乙种商品每件的进价为y元,
根据题意,得:
解得:
答:甲种商品每件的进价为10元,乙种商品每件的进价为30元;
(2)设购进甲种商品m件,则乙种商品购进(80-m)件,
根据题意,得:(15-10)m+(40-30)(80-m)≥600,
解得:m≤40,
答:该超市最多购进甲种商品40件.
科目:初中数学 来源: 题型:
【题目】某工厂为了对新研发的一种产品进行合理定价,将该产品按拟定的价格进行试销,通过对5天的试销情况进行统计,得到如下数据:
(1)通过对上面表格中的数据进行分析,发现销量y(件)与单价(元/件)之间存在一次函数关系,求y关于的函数关系式(不需要写出函数自变量的取值范围);
(2)预计在今后的销售中,销量与单价仍然存在(2)中的关系,且该产品的成本是20元/件.为使工厂获得最大利润,该产品的单价应定为多少?
(3)为保证产品在实际试销中销售量不得低于30件,且工厂获得得利润不得低于400元,请直接写出单价的取值范围;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】近几年,随着电子商务的快速发展,“电商包裹件”占“快递件”总量的比例逐年增长,根据企业财报,某网站得到如下统计表:
(1)请选择适当的统计图,描述2014﹣2017年“电商包裹件”占当年“快递件”总量的百分比(精确到1%);
(2)若2018年“快递件”总量将达到675亿件,请估计其中“电商包裹件”约为多少亿件?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点O为直线AB上的一点,∠BOC=∠DOE=90°
(1)如图1,当射线OC、射线OD在直线AB的两侧时,请回答结论并说明理由;
①∠COD和∠BOE相等吗?
②∠BOD和∠COE有什么关系?
(2)如图2,当射线OC、射线OD在直线AB的同侧时,请直接回答;
①∠COD和∠BOE相等吗?
②第(1)题中的∠BOD和∠COE的关系还成立吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:在数轴上点表示数,点表示数6,
(1)A、B两点之间的距离等于_________;
(2)在数轴上有一个动点,它表示的数是,则的最小值是_________;
(3)若点与点之间的距离表示为,点与点之间的距离表示为,请在数轴上找一点,使,则点表示的数是_________;
(4)若在原点的左边2个单位处放一挡板,一小球甲从点处以5个单位/秒的速度向右运动;同时另一小球乙从点处以2个单位/秒的速度向左运动,在碰到挡板后(忽略球的大小,可看作一点)两球分别以原来的速度向相反的方向运动,设运动时间为秒,请用来表示甲、乙两小球之间的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边三角形ABC中,AB=2,动点D从B开始沿BC向点C运动,到达点C后停止运动,将△ABD绕点A旋转后得到△ACE,则下列说法中,正确的是( )
①DE的最小值为1;②ADCE的面积是不变的;③在整个运动过程中,点E运动的路程为2;④在整个运动过程中,△ADE的周长先变小后变大.
A. ①③④ B. ①②③ C. ②③④ D. ①②④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一只小虫子落在数轴上的某点,第一次从向左跳一个单位到,第二次从向右跳个单位到,第三次从向左跳个单位到,第四次从向右跳个单位到,按以上规律跳了次时,它落在数轴上的点所表示的数恰好是2019,则这只小虫的初始位置所在的数是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,BD平分∠ABC,交AC于点D,DE⊥AB于点E,AB=3cm,BC=2.5cm,△ABD的面积为2cm2,则S△ABC=____________cm2。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com