【题目】如图1,在正方形和正方形中,边在边上,正方形绕点按逆时针方向旋转
(1)如图2,当时,求证:;
(2)在旋转的过程中,设的延长线交直线于点.①如果存在某一时刻使得,请求出此时的长;②若正方形绕点按逆时针方向旋转了,求旋转过程中,点运动的路径长.
【答案】(1)见详解;(2) ;.
【解析】
(1)由正方形的性质得出AD=AB,AG=AE,∠BAD=∠EAG=90°,由∠BAE+∠EAD=∠BAD,∠DAG+∠EAD=∠EAG,推出∠BAE=∠DAG,由SAS即可证得△DAG≌△BAE;
(2)①由AB=2,AE=1,由勾股定理得AF=AE=,易证△ABF是等腰三角形,由AE=EF,则直线BE是AF的垂直平分线,设BE的延长线交AF于点O,交AD于点H,则OE=OA=,由勾股定理得OB=,由cos∠ABO=,cos∠ABH=,求得BH=,由勾股定理得AH==,则DH=ADAH=2,由∠DHP=∠BHA,∠BAH=∠DPH=90°,证得△BAH∽△DPH,得出,即可求得DP;
②由△DAG≌△BAE,得出∠ABE=∠ADG,由∠BPD=∠BAD=90°,则点P的运动轨迹为以BD为直径的,由正方形的性质得出BD=AB=2,由正方形AEFG绕点A按逆时针方向旋转了60°,得出∠BAE=60°,由AB=2AE,得出∠BEA=90°,∠ABE=30°,B、E、F三点共线,同理D、F、G三点共线,则P与F重合,得出∠ABP=30°,则所对的圆心角为60°,由弧长公式即可得出结果.
解答:(1)证明:在正方形ABCD和正方形AEFG中,AD=AB,AGspan>=AE,∠BAD=∠EAG=90°,
∵∠BAE+∠EAD=∠BAD,∠DAG+∠EAD=∠EAG,
∴∠BAE=∠DAG,
在△DAG和△BAE中,
,
∴△DAG≌△BAE(SAS);
∴BE=DG;
(2)解:①∵AB=2AE=2,
∴AE=1,
由勾股定理得,AF=AE=,
∵BF=BC=2,
∴AB=BF=2,
∴△ABF是等腰三角形,
∵AE=EF,
∴直线BE是AF的垂直平分线
,设BE的延长线交AF于点O,交AD于点H,如图3所示:
则OE=OA=,
∴OB=,
∵cos∠ABO=,cos∠ABH=,
∴BH=,
AH==,
∴DH=ADAH=2,
∵∠DHP=∠BHA,∠BAH=∠DPH=90°,
∴△BAH∽△DPH,
∴,
即
∴DP=;
②
∵△DAG≌△BAE,
∴∠ABE=∠ADG,
∵∠BPD=∠BAD=90°,
∴点P的运动轨迹为以BD为直径的,
BD=AB=2,
∵正方形AEFG绕点A按逆时针方向旋转了60°,
∴∠BAE=60°,
∵AB=2AE,
∴∠BEA=90°,∠ABE=30°,
∴B、E、F三点共线,
同理D、F、G三点共线,
∴P与F重合,
∴∠ABP=30°,
∴所对的圆心角为60°,
∴旋转过程中点P运动的路线长为:.
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆、、,组成一条平滑的曲线,点从原点出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2019秒时,点的坐标是____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在斜坡的顶部有一铁塔AB,B是CD的中点,CD是水平的,在阳光的照射下,塔影DE留在坡面上.已知铁塔底座宽CD=12 m,塔影长DE=18 m,小明和小华的身高都是1.6m,同一时刻,小明站在点E处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m和1m,那么塔高AB为( )
A. 24m B. 22m C. 20m D. 18m
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC 中,∠BAC=90°,AB=AC=12cm,点 D 为△ABC 内一点,∠BAD=15°,AD= 4 cm,连接 BD,将△ABD 绕点 A 按逆时针方向旋转,使 AB 与 AC 重合,点 D 的对应点点 E,连接 DE,DE 交 AC 于点 F,则 CF 的长为__________cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】被历代数学家尊为“算经之首”的《九章算术》是中国古代算法的扛鼎之作.《九章算术》中记载:“今有五雀、六燕,集称之衡,雀俱重,燕俱轻.一雀一燕交而处,衡适平.并燕、雀重一斤.问燕、雀一枚各重几何?”
译文:“今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻.将一只雀、一只燕交换位置而放,重量相等.5只雀、6只燕重量为1斤.问雀、燕毎只各重多少斤?”
设每只雀重x斤,每只燕重y斤,可列方程组为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在下列网格图中,每个小正方形的边长均为个单位长度.已知在网格图中的位置如图所示.
(1)请在网格图中画出向右平移单位后的图形,并直接写出平移过程中线段扫过的面积;
(2)请在网格图中画出以为对称中心的图形.(保留作图痕迹)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取次,数据如下(单位:分).
甲 | ||||||||
乙 |
(1)请你计算这两组数据的平均数、中位数.
(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校为了庆祝校园艺术节,准备购买一批盆花布置校园.已知1盆A种花和2盆B种花一共需13元,2盆A种花和1盆B种花一共需11元.
(1)求1盆A种花和1盒B种花的售价各是多少元?
(2)学校准备购进这两种盆花共100盆,并且A种盆花的数量不超过B种盆花数量的2倍,请求出A种盆花的数量最多是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com