【题目】如图,在平面直角坐标系可中,直线y=x+1与y=﹣x+3交于点A,分别交x轴于点B和点C,点D是直线AC上的一个动点.
(1)求点A,B,C的坐标;
(2)在直线AB上是否存在点E使得四边形EODA为平行四边形?存在的话直接写出的值,不存在请说明理由;
(3)当△CBD为等腰三角形时直接写出D坐标.
【答案】(1)A(,),B(﹣1,0),C(4,0);(2)存在,=;(3)点D的坐标为(﹣,)或(8,﹣3)或(0,3)或(,).
【解析】
(1)将y=x+1与y=﹣x+3联立求得方程组的解可得到点A的坐标,然后将y=0代入函数解析式求得对应的x的值可得到点B、C的横坐标;
(2)当OE∥AD时,存在四边形EODA为平行四边形,然后依据平行线分线段成比例定理可得到=;
(3)当DB=DC时,点D在BC的垂直平分线上可先求得点D的横坐标;即AC与y轴的交点为F,可求得CF=BC=F,当点D与点F重合或点D与点F关于点C对称时,三角形BCD为等腰三角形,当BD=BC时,设点D的坐标为(x,﹣x+3),依据两点间的距离公式可知:(x+1)2+(﹣x+3)2=25,从而可求得点D的横坐标.
(1)将y=x+1与y=﹣x+3联立得:,
解得:x=,y=,
∴A(,).
把y=0代入y=x+1得:x+1=0,解得x=﹣1,
∴B(﹣1,0).
把y=0代入y=﹣x+3得:﹣ x+3=0,解得:x=4,
∴C(4,0).
(2)如图,存在点E使EODA为平行四边形.
∵EO∥AC,
∴==.
(3)当点BD=DC时,点D在BC的垂直平分线上,则点D的横坐标为,
将x=代入直线AC的解析式得:y=,
∴此时点D的坐标为(,).
如图所示:
FC==5,
∴BC=CF,
∴当点D与点F重合时,△BCD为等腰三角形,
∴此时点D的坐标为(0,3);
当点D与点F关于点C对称时,CD=CB,
∴此时点D的坐标为(8,﹣3),
当BD=DC时,设点D的坐标为(x,﹣x+3),
依据两点间的距离公式可知:(x+1)2+(﹣x+3)2=25,
解得x=4(舍去)或x=﹣,
将x=﹣代入y=﹣x+3得y=,
∴此时点D的坐标为(﹣,).
综上所述点D的坐标为(﹣,)或(8,﹣3)或(0,3)或(,).
科目:初中数学 来源: 题型:
【题目】某公园的门票价格如下表所示:
购票人数 | 1~50人 | 51~100人 | 100人以上 |
每人门票价 | 20元 | 17元 | 14元 |
某校初一(1)(2)两个班去游览公园,其中(1)班人数较少,不足50人,(2)班人数较多,超过50人,但是不超过100人.如果两个班都以班为单位分别购票,则一共应付1912元;如果两个班联合起来,作为个团体购票,则只需付1456元
(1)列方程或方程组求出两个班各有多少学生?
(2)若(1)班全员参加,(2)班有20人不参加此次活动,请你设计一种最省钱方式来帮他们买票,并说明理由.
(3)你认为是否存在这样的可能:51到100人之间买票的钱数与100人以上买票的钱数相等?如果有,是多少人与多少人买票钱数相等?(直接写结果)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知四边形ABCD是平行四边形,下列结论中不正确的是( )
A. 当AB=BC时,它是菱形 B. 当AC⊥BD时,它是菱形
C. 当∠ABC=90°时,它是矩形 D. 当AC=BD时,它是正方形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了调查学生书写规范汉字的能力,从七年级1000名学生中随机抽选了部分学生参加测试,并根据测试成绩绘制了如下频数分布表和扇形统计图(尚不完整)
组别 | 成绩x分 | 频数(人数) |
第1组 | x<60 | 4 |
第2组 | 60≤x<70 | a |
第3组 | 70≤x<80 | 20 |
第4组 | 80≤x<90 | b |
第5组 | 90≤x<100 | 10 |
请结合图表完成下列各题
(1)填空:表中a的值为_______,b的值为_______,扇形统计图中表示第1组所对应的圆心角度数为_______.
(2)若测试成绩不低于80分为优秀,请你估计从该校七年级学生中随机抽查一个学生,他是规范汉字书写优秀的概率是_______;
(3)若测试成绩在60~80分之间(含60分,不含80分)为合格,请你估计则该校七年级学生规范汉字书写不合格的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明在数学活动课上,将边长为和3的两个正方形放置在直线l上,如图a,他连接AD、CF,经测量发现AD=CF.
(1)他将正方形ODEF绕O点逆时针针旋转一定的角度,如图b,试判断AD与CF还相等吗?说明理由.
(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图c,请求出CF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E.若AB=6,则△AEC的面积为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】七(1)班为“壮丽70年,奋斗新时代”演讲比赛购买A,B两种奖品.已知A奖品每件x元,B奖品每件y元.
⑴ 若购买A奖品m件,B奖品n件,共需要多少元;
⑵ 设购买A奖品m件,购买A,B两种奖品共10件:
① 购买两种奖品共需要多少元;
② 若购买A奖品至少2件,B奖品至少6件,请设计出购买方案,并说明每种方案的共需要多少元.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;
(3)当t为何值时,△DEF为直角三角形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】人民商场准备购进甲、乙两种牛奶进行销售,若甲种牛奶的进价比乙种牛奶的进价每件少5元,其用90元购进甲种牛奶的数量与用100元购进乙种牛奶的数量相同.
(1)求甲种牛奶、乙种牛奶的进价分别是多少元?
(2)若该商场购进甲种牛奶的数量是乙种牛奶的3倍少5件,该商场甲种牛奶的销售价格为49元,乙种牛奶的销售价格为每件55元,则购进的甲、乙两种牛奶全部售出后,可使销售的总利润(利润=售价﹣进价)等于371元,请通过计算求出该商场购进甲、乙两种牛奶各自多少件?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com