精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,给出如下定义:已知点A(2,3),点B(6,3),连接AB.如果线段AB上有一个点与点P的距离不大于1,那么称点P是线段AB的“环绕点”.

(1)已知点C(3,1.5),D(4,3.5),E(1,3),则是线段AB的“环绕点”的点是   

(2)已知点P(m,n)在反比例函数y=的图象上,且点P是线段AB的“环绕点”,求出点P的横坐标m的取值范围;

(3)已知M上有一点P是线段AB的“环绕点”,且点M(4,1),求M的半径r的取值范围.

【答案】(1)点D和E(2)2≤m≤4;(3)1≤r≤2+1

【解析】分析:(1)根据点AB的纵坐标相等判断出ABx轴,然后求出点CDEAB的距离,再根据环绕点的定义判断;
(2)当点P在线段AB的上方,当点P在线段AB的下方,根据点P到线段AB的距离为1时,即可得到结论;
(3)当点P在线段AB的下方时,且到线段AB的最小距离是1时,当点P在线段AB的上方时,且到点A的距离是1时,即可得到结论.

详解:(1)环绕点的定义可知:点P到直线AB的距离d应满足:

AB两点的纵坐标都是3,

ABx轴,

∴点C到直线AB的距离为|1.53|=1.5>1,

D到直线AB的距离为|3.53|=0.5<1,

E到直线AB的距离为|33|=0<1,

∴点DE是线段AB的环绕点;

故答案为:点DE

(2)当点P在线段AB的上方,点P到线段AB的距离为1时,m=2;

当点P在线段AB的下方,点P到线段AB的距离为1时,m=4;

所以点P的横坐标m的取值范围为:

(3)当点P在线段AB的下方时,且到线段AB的最小距离是1时,r=1;

当点P在线段AB的上方时,且到点A的距离是1时,如图,过MMCAB

CM=2,AC=2,

连接MA并延长交⊙MP

PA=1,

,

∴⊙M的半径r的取值范围是

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:

(1)此次共调查了多少人?

(2)求文学社团在扇形统计图中所占圆心角的度数;

(3)请将条形统计图补充完整;

(4)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算

(1)(-3)-(-2)+(-4)

(2)(-)-(-)-|-|-(-)

(3)-23÷×(-)2

(4)()×(-36)

(5)-14-×

(6)(-1)4+5÷(-)×(-6)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点P为EAF平分线上一点,PBAE于B,PCAF于C,点M,N分别是射线AE,AF上的点,且PM=PN.

(1)如图1,当点M在线段AB上,点N在线段AC的延长线上时,求证:BM=CN;

(2)在(1)的条件下,直接写出线段AM,AN与AC之间的数量关系

(3)如图2,当点M在线段AB的延长线上,点N在线段AC上时,若AC:PC=2:1,且PC=4,求四边形ANPM的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.健身达人小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们61日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:

请依据统计结果回答下列问题:

(1)本次调查中,一共调查了   位好友.

(2)已知A类好友人数是D类好友人数的5倍.

①请补全条形图;

②扇形图中,“A”对应扇形的圆心角为   度.

③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友61日这天行走的步数超过10000步?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某检修小组乘一辆汽车沿公路检修线路,约定向东走为正,向西走为负。某天从A地出发到收工时,行走记录(长度单位:千米)为:+15,-2+5,-1+10,-3

⑴问收工时,检修小组在A处的哪一边,距A地多远?

⑵若汽车每千米的耗油为升,求从出发到收工共耗油多少升?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,已知直线AB的函数解析式为y=﹣2x+8,与x轴交于点A,与y轴交于点B.

(1)求A、B两点的坐标;

(2)若点P(m,n)为线段AB上的一个动点(与A、B不重合),作PE⊥x轴于点E,PF⊥y轴于点F,连接EF,问:

①若△PAO的面积为S,求S关于m的函数关系式,并写出m的取值范围;

②是否存在点P,使EF的值最小?若存在,求出EF的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列一段文字:在直角坐标系中,已知两点的坐标是Mx1y1),Nx2y2)),MN两点之间的距离可以用公式MN计算.解答下列问题:

1)若点P24),Q(﹣3,﹣8),求PQ两点间的距离;

2)若点A12),B4,﹣2),点O是坐标原点,判断△AOB是什么三角形,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD,ADBC,∠ADC=90°,BC=8DC=6AD=10,动点P从点D出发,沿线段DA的方向以每秒2个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点PQ分别从点DC同时出发,当点P运动到点A时,点Q随之停止运动,设运动的时间为t(秒)。

1)当点P运动t秒后,AP=____________(用含t的代数式表示);

2)若四边形ABQP为平行四边形,求运动时间t

3)当t为何值时,△BPQ是以BQBP为底边的等腰三角形;

查看答案和解析>>

同步练习册答案