精英家教网 > 初中数学 > 题目详情
14.如图,Rt△ABC中,∠A=90°,以AB为直径的⊙O交BC于点D,点E在⊙O上,CE=CA,AB,CE的延长线交于点F.
(1)求证:CE与⊙O相切;
(2)若⊙O的半径为3,EF=4,求BD的长.

分析 (1)连接OE,OC,通过三角形求得证得∠OEC=∠OAC,从而证得OE⊥CF,即可证得结论;
(2)根据勾股定理求得OF,解直角三角形求得$tanF=\frac{OE}{EF}=\frac{3}{4}$.进而求得AC=6,从而求得△ABC是等腰直角三角形,根据勾股定理求得BC,然后根据等腰三角形三线合一的性质求得DB即可.

解答 (1)证明:连接OE,OC.
在△OEC与△OAC中,
$\left\{\begin{array}{l}OE=OA\\ OC=OC\\ CE=CA\end{array}\right.$
∴△OEC≌△OAC(SSS),
∴∠OEC=∠OAC.
∵∠OAC=90°,
∴∠OEC=90°.
∴OE⊥CF于E.
∴CF与⊙O相切.
(2)解:连接AD.
∵∠OEC=90°,
∴∠OEF=90°.
∵⊙O的半径为3,
∴OE=OA=3.
在Rt△OEF中,∠OEF=90°,OE=3,EF=4,
∴$OF=\sqrt{O{E^2}+E{F^2}}=5$,$tanF=\frac{OE}{EF}=\frac{3}{4}$.
在Rt△FAC中,∠FAC=90°,AF=AO+OF=8,
∴AC=AF•tanF=6,
∵AB为直径,
∴AB=6=AC,∠ADB=90°.
∴BD=$\frac{BC}{2}$.
在Rt△ABC中,∠BAC=90°,
∴$BC=\sqrt{A{B^2}+A{C^2}}=6\sqrt{2}$.
∴BD=$3\sqrt{2}$.

点评 本题考查了切线的性质,三角形全等的判定和性质,勾股定理的应用,解直角三角形等,作出辅助线构建直角三角形是本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.化简:$(\frac{2}{x}-\frac{1}{x-1})÷\frac{{{x^2}-4x+4}}{x-1}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在四边形ABCD中,AB∥CD,∠BAD的平分线交直线BC于点E,交直线DC于点F,若CE=CF,求证:四边形ABCD是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知两个以O为顶点且不全等的直角三角形△AOB和△COD,其中∠ABO=∠DCO=30°.
(1)如图1,设∠BOD=α(0°<α<60°),点E、F、M分别是AC、CD、DB的中点.连接FM、EM.请问:随着α的变化,试判断$\frac{FM}{EM}$的值是否发生变化?若不变,请求出$\frac{FM}{EM}$的值;若变化,请说明理由;
(2)如图2,若BO=3,点N在线段OD上,且NO=1,点P是线段AB上的一个动点,将△COD固定,△AOB绕点O旋转的过程中,线段PN长度的最大值是4;最小值是$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知:如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D.求证:BE=CD.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.对函数y=x3的描述:①y随x的增大而增大,②它的图象是中心对称图形,③它的自变量取值范围是x≠0.正确的是(  )
A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如图,△ABC中,∠C=90°,∠B=60°,AC=2$\sqrt{3}$,点D在AC上,以CD为直径作⊙O与BA相切于点E,则BE的长为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如图,把图形折叠起来,它会变为下面的哪幅立体图形(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.已知AB是⊙O的直径,点P是AB延长线上的一个动点,过P作⊙O的切线,切点为C,∠APC的平分线交AC于点D.若∠CPD=20°,则∠CAP等于(  )
A.30°B.20°C.45°D.25°

查看答案和解析>>

同步练习册答案