精英家教网 > 初中数学 > 题目详情
16.一次函数y=kx+b的图象与x,y轴分别交于点A(2,0),B(0,4).
(1)求该直线的解析式.
(2)请判断点(1,2)是否在函数图象上;
(3)O为坐标原点,C(1,0)为OA上的点,D(1,2)为AB上的点,P为OB上一动点,求PC+PD的最小值,并求取得最小值时P点的坐标.

分析 (1)将点A、B的坐标代入y=kx+b并计算出k、b的值,从而得出解析式;
(2)利用代入法验证(1,2)是否在函数图象上即可;
(3)取点C关于点O的对称点为C′,连接DC′,即C′、P、D共线时,PC+PD的最小值是C′D.在直角三角形C′CD中,根据勾股定理,可得C′D的长,根据三角形的中位线定理已知点P的坐标.

解答 解:(1)把点A(2,0),B(0,4)代入解析式y=kx+b得:
$\left\{\begin{array}{l}{2k+b=0}\\{b=4}\end{array}\right.$
解得:$\left\{\begin{array}{l}{k=-2}\\{b=4}\end{array}\right.$
则一次函数的解析式为y=-2x+4;
(2)当x=1时,y=-2×1+4=2,所以点在函数图象上;
(3)如图,

∵点C的坐标为(1,0),
则C关于y轴的对称点为C′(-1,0),
又∵点D的坐标为(1,2),
连接C′D,设C′D的解析式为y=kx+b,
有$\left\{\begin{array}{l}{k+b=2}\\{-k+b=0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{k=1}\\{b=1}\end{array}\right.$,
∴y=x+1是DC′的解析式,
∵x=0,
∴y=1,
即P(0,1).
∵PC+PD的最小值=C′D,
∴由勾股定理得C′D=2$\sqrt{2}$.

点评 本题考查了一次函数的综合应用及最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合所学轴对称变换来解决.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.如图,△ABC的角平分线AP和外角平分线BP相交于点P,求证:点P也在∠BCD的平分线上.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.求下列各式中的x:
(1)150-x3=25;
(2)(2x-1)2=9.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.经过一个已知点A能确定一个圆吗?你怎样画这个圆?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,直线y=kx+b交坐标轴于A、B两点,则不等式kx+b<0的解集是x<-3.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.某同学在解方程3x-1=□x+1时,把□处的数字看错了,解得x=-2,则该同学把□看成了(  )
A.3B.$\frac{1}{3}$C.4D.$-\frac{1}{4}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知y1=5-3x,y2=4x-2,当x取何值时,y1比y2小7?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.计算:-2+(-6)=-8,-3+9=6,(-3)×(-4)=12,(-3.14)×0=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,E为长方形ABCD的边CD上一点,把长方形沿AE折叠,点D落在BC上的点F处,如果∠DAE=20°,求△CFE的度数.

查看答案和解析>>

同步练习册答案