【题目】如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,1),B(0,﹣2),C(1,0),点P(0,2)绕点A旋转180°得到点P1,点P1绕点B旋转180°得到点P2,点P2绕点C旋转180°得到点P3,点P3绕点A旋转180°得到点P4,…,按此作法进行下去,则点P2019的坐标为( )
A.(-2,0)B.C.(2,-4)D.(-2,-2)
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD的顶点都在坐标轴上,若AB∥CD,AOB与COD面积分别为8和18,若双曲线y=恰好经过BC的中点E,则k的值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在平面直角坐标系中,二次函数(,为常数)的图像顶点的纵坐标为.
(1)直接写出、满足的关系式是______;
(2)若点,()是二次函数(,为常数)的图像上的两点.
①当,时,求的长度;
②当时,求的长度;
③若存在实数,使得,且成立,求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在△ABC中,DE∥BC,AD=5,BD=10,AE=3.
(1)求CE的长.
(2)在△ABC中,点D,E,Q分别在AB,AC,BC上,且DE∥BC,AQ交DE于点P.小明认为,你认为小明的结论正确吗?请说明你的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 我们定义:如图1、图2、图3,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′,当α+β=180°时,我们称△AB'C′是△ABC的“旋补三角形”,△AB′C′边B'C′上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.图1、图2、图3中的△AB′C′均是△ABC的“旋补三角形”.
(1)①如图2,当△ABC为等边三角形时,“旋补中线”AD与BC的数量关系为:AD= BC;
②如图3,当∠BAC=90°,BC=8时,则“旋补中线”AD长为 .
(2)在图1中,当△ABC为任意三角形时,猜想“旋补中线”AD与BC的数量关系,并给予证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=12,AD=15,E是CD上的点,将△ADE沿折痕AE折叠,使点D落在BC边上点F处,点P是线段CB延长线上的动点,连接PA,若△PAF是等腰三角形,则PB的长为____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“食品安全”受到全社会的广泛关注,育才中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面的两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:
(1)接受问卷调查的学生共有________人,扇形统计图中“基本了解”部分所对应扇形的圆心角为_________;
(2)请补全条形统计图;
(3)若对食品安全知识达到“了解”程度的学生中,男、女生的比例恰为,现从中随机抽取人参加食品安全知识竞赛,则恰好抽到个男生和个女生的概率________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,为边的中点.点从点出发,以每秒个单位长度的速度沿运动到点停止,同时点从点出发,以每秒个单位长度的速度沿折线运动到点停止,当点停止运动时,点也停止运动.当点不与的顶点重合时,过点作交的边于点以和为边作,设点的运动时间为(秒),的面积为(平方单位).
(1)当点与点重合时,求的值;
(2)用含的代数式表示的长;
(3)求与之间的函数关系式;
(4)连结直接写出将分成面积相等的两部分时的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com