阅读材料:
如图(1),在四边形ABCD中,对角线AC⊥BD,垂足为P,求证:S四边形ABCD=AC·BD.
证明:∵AC⊥BD ∴
∴S四边形ABCD=S△ACD+S△ABC=AC·PD+AC·PB=AC(PD+PB)=AC ·BD
解答问题:
(1)上述证明得到的性质可叙述为: ▲
(2)已知:如图(2),等腰梯形ABCD中,AD∥BC,对角线AC⊥BD且相交于点P,AD=3cm,BC=7cm,利用上述的性质求梯形的面积.
科目:初中数学 来源: 题型:阅读理解
查看答案和解析>>
科目:初中数学 来源: 题型:阅读理解
1 | 2 |
查看答案和解析>>
科目:初中数学 来源: 题型:阅读理解
x1+x2 |
2 |
y1+y2 |
2 |
x1+x2 |
2 |
y1+y2 |
2 |
|
|
(x2-x1)2+(y2-y1)2 |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:阅读理解
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com