精英家教网 > 初中数学 > 题目详情

【题目】如图1,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形,E是AB的中点,连接CE并延长交AD于F.
(1)求证:①△AEF≌△BEC;②四边形BCFD是平行四边形;
(2)如图2,将四边形ACBD折叠,使D与C重合,HK为折痕,求sin∠ACH的值.

【答案】
(1)

证明:①在△ABC中,∠ACB=90°,∠CAB=30°,

∴∠ABC=60°.

在等边△ABD中,∠BAD=60°,

∴∠BAD=∠ABC=60°.

∵E为AB的中点,

∴AE=BE.

又∵∠AEF=∠BEC,

∴△AEF≌△BEC.

②在△ABC中,∠ACB=90°,E为AB的中点,

∴CE= AB,BE= AB.

∴CE=AE,

∴∠EAC=∠ECA=30°,

∴∠BCE=∠EBC=60°.

又∵△AEF≌△BEC,

∴∠AFE=∠BCE=60°.

又∵∠D=60°,

∴∠AFE=∠D=60°.

∴FC∥BD.

又∵∠BAD=∠ABC=60°,

∴AD∥BC,即FD∥BC.

∴四边形BCFD是平行四边形

证明:①在△ABC中,∠ACB=90°,∠CAB=30°,

∴∠ABC=60°.

在等边△ABD中,∠BAD=60°,

∴∠BAD=∠ABC=60°.

∵E为AB的中点,

∴AE=BE.

又∵∠AEF=∠BEC,

∴△AEF≌△BEC.

②在△ABC中,∠ACB=90°,E为AB的中点,

∴CE= AB,BE= AB.

∴CE=AE,

∴∠EAC=∠ECA=30°,

∴∠BCE=∠EBC=60°.

又∵△AEF≌△BEC,

∴∠AFE=∠BCE=60°.

又∵∠D=60°,

∴∠AFE=∠D=60°.

∴FC∥BD.

又∵∠BAD=∠ABC=60°,

∴AD∥BC,即FD∥BC.

∴四边形BCFD是平行四边形

;证明:①在△ABC中,∠ACB=90°,∠CAB=30°,

∴∠ABC=60°.

在等边△ABD中,∠BAD=60°,

∴∠BAD=∠ABC=60°.

∵E为AB的中点,

∴AE=BE.

又∵∠AEF=∠BEC,

∴△AEF≌△BEC.

②在△ABC中,∠ACB=90°,E为AB的中点,

∴CE= AB,BE= AB.

∴CE=AE,

∴∠EAC=∠ECA=30°,

∴∠BCE=∠EBC=60°.

又∵△AEF≌△BEC,

∴∠AFE=∠BCE=60°.

又∵∠D=60°,

∴∠AFE=∠D=60°.

∴FC∥BD.

又∵∠BAD=∠ABC=60°,

∴AD∥BC,即FD∥BC.

∴四边形BCFD是平行四边形


(2)

解:∵∠BAD=60°,∠CAB=30°,

∴∠CAH=90°.

在Rt△ABC中,∠CAB=30°,设BC=a,

∴AB=2BC=2a.

∴AD=AB=2a.

设AH=x,则HC=HD=AD﹣AH=2a﹣x,

在Rt△ABC中,AC2=(2a)2﹣a2=3a2

在Rt△ACH中,AH2+AC2=HC2,即x2+3a2=(2a﹣x)2

解得x= a,即AH= a.∴HC=2a﹣x=2a﹣ a= a.∴sin∠ACH=

解:∵∠BAD=60°,∠CAB=30°,

∴∠CAH=90°.

在Rt△ABC中,∠CAB=30°,设BC=a,

∴AB=2BC=2a.

∴AD=AB=2a.

设AH=x,则HC=HD=AD﹣AH=2a﹣x,

在Rt△ABC中,AC2=(2a)2﹣a2=3a2

在Rt△ACH中,AH2+AC2=HC2,即x2+3a2=(2a﹣x)2

解得x= a,即AH= a.∴HC=2a﹣x=2a﹣ a= a.∴sin∠ACH=

;解:∵∠BAD=60°,∠CAB=30°,

∴∠CAH=90°.

在Rt△ABC中,∠CAB=30°,设BC=a,

∴AB=2BC=2a.

∴AD=AB=2a.

设AH=x,则HC=HD=AD﹣AH=2a﹣x,

在Rt△ABC中,AC2=(2a)2﹣a2=3a2

在Rt△ACH中,AH2+AC2=HC2,即x2+3a2=(2a﹣x)2

解得x= a,即AH= a.∴HC=2a﹣x=2a﹣ a= a.∴sin∠ACH=
【解析】(1)①在△ABC中,由已知可得∠ABC=60°,从而推得∠BAD=∠ABC=60°.由E为AB的中点,得到AE=BE.又因为∠AEF=∠BEC,所以△AEF≌△BEC.②在Rt△ABC中,E为AB的中点,则CE= AB,BE= AB,得到∠BCE=∠EBC=60°.由△AEF≌△BEC,得∠AFE=∠BCE=60°.又∠D=60°,得∠AFE=∠D=60度.所以FC∥BD,又因为∠BAD=∠ABC=60°,所以AD∥BC,即FD∥BC,则四边形BCFD是平行四边形.(2)在Rt△ABC中,设BC=a,则AB=2BC=2a,AD=AB=2a.设AH=x,则HC=HD=AD﹣AH=2a﹣x.在Rt△ABC中,由勾股定理得AC2=3a2 . 在Rt△ACH中,由勾股定理得AH2+AC2=HC2 , 即x2+3a2=(2a﹣x)2 . 解得x= a,即AH= a.求得HC的值后,利用sin∠ACH=AH:HC求值.
【考点精析】解答此题的关键在于理解等边三角形的性质的相关知识,掌握等边三角形的三个角都相等并且每个角都是60°,以及对平行四边形的判定的理解,了解两组对边分别平行的四边形是平行四边形:两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=8,点E是AD上的一点,有AE=4,BE的垂直平分线交BC的延长线于点F,连结EF交CD于点G.若G是CD的中点,则BC的长是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先化简,再求值: ,其中x是不等式组 的一个整数解.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c的图象如图所示,记m=|a﹣b+c|+|2a+b+c|,n=|a+b+c|+|2a﹣b﹣c|.则下列选项正确的是(  )
A.m<n
B.m>n
C.m=n
D.m、n的大小关系不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】市一中准备组织学生及学生家长到武汉大学参观体验,为了便于管理,所有人员到武汉必须乘坐在同一列动车上;根据报名人数,若都买 一等座单程火车票需2556元,若都买二等座单程火车票且花钱最少,则需1530元;已知学生家长与教师的人数之比为2:1,安陆到武汉的动车票价格(动 车学生票只有二等座可以打6折)如下表所示:

(1)参加参观体验的老师、家长与学生各有多少人?
(2)由于各种原因,二等座火车票单程只能买x张(x小于参加参观体验的人数),其余的须买一等座火车票,在保证每位参与人员都有座位坐的前提下,请你设计最经济的购票方案,并写出购买火车票的总费用(单程)y与x之间的函数关系式.
(3)请你做一个预算,按第(2)小题中的购票方案,购买单程火车票的总费用至少是多少钱?最多是多少钱?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:﹣16 ×cos45°﹣20170+31

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=﹣x2+bx+c与y轴相交于点A(0,3),与x正半轴相交于点B,对称轴是直线x=1

(1)求此抛物线的解析式以及点B的坐标.
(2)动点M从点O出发,以每秒2个单位长度的速度沿x轴正方向运动,同时动点N从点O出发,以每秒3个单位长度的速度沿y轴正方向运动,当N点到达A点时,M、N同时停止运动.过动点M作x轴的垂线交线段AB于点Q,交抛物线于点P,设运动的时间为t秒.
①当t为何值时,四边形OMPN为矩形.
②当t>0时,△BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果任意选择一对有序整数(m,n),其中|m|≤1,|n|≤3,每一对这样的有序整数被选择的可能性是相等的,那么关于x的方程x2+nx+m=0有两个相等实数根的概率是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据问题进行计算:
(1)计算:(x+3)(x﹣3)﹣x(x﹣2)
(2)解不等式组:

查看答案和解析>>

同步练习册答案