精英家教网 > 初中数学 > 题目详情
3.如图,△ABC在平面直角坐标系中,点A(1,-1),点B(3,1),点C(-1,3),将△ABC绕点O旋转90°后得△A1,B1,C1,求点A1,B1,C1的坐标.

分析 利用旋转的性质,分别画出△ABC绕点O顺时针或逆时针旋转90°后得△A1B1C1,然后利用所画图形分别写出对应的点A1,B1,C1的坐标.

解答 解:当△ABC绕点O顺时针旋转90°后得△A1B1C1,如图1,点A1,B1,C1的坐标分别为(-1,-1),(1,-3),(3,1);
当△ABC绕点O逆时针旋转90°后得△A1B1C1,如图2,点A1,B1,C1的坐标分别为(1,1),(-1,3),(-3,-1).

点评 本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.化简:$\frac{16-{a}^{2}}{{a}^{2}+4a+4}$÷$\frac{a-4}{2a+4}$$•\frac{a+2}{a+4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx-75,其图象如图所示.
(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?
(2)销售单价在什么范围时,该商品每天的销售利润不低于16元?
(3)若点A关于原点的对称点为点C,求△OBC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知在平面直角坐标系中,点Q的坐标为(4,0),点P是直线y=-$\frac{1}{2}$x+3上在第一象限内的一点.设△OPQ的面积为S.
(1)设点P的坐标为(x,y),用含y的代数式表示S,并写出y的取值范围.
(2)设点P的坐标为(x,y),用含x的代数式表示S,并写出x的取值范围.
(3)当点P的坐标为何值时,△OPQ的面积等于直线y=-$\frac{1}{2}$x+3与坐标轴围成的三角形面积的一半?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,已知BC为⊙O的直径,△ABC内接于⊙O,AB=2,∠C=30°.
(1)尺规作图:作∠BAC的平分线交⊙O于点D;(保留作图痕迹,不写作法)
(2)求$\widehat{AD}$的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如图,直线a与直线b被直线c所截,b⊥c,垂足为点A,∠1=70°,若使直线b与直线a平行,则可将直线b绕着点A顺时针至少旋转20度.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图,正方形ABCD和EFGC中,左右两个正方形边长分别为a、b,用代数式表示阴影部分△AEG的面积为(  )
A.a2-b2B.$\frac{2}{3}({a}^{2}-{b}^{2})$C.$\frac{1}{2}{b}^{2}$D.$\frac{1}{2}{a}^{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.若一次函数y=x+m的图象经过第一、二、三象限,写出一个符合条件的m的值为1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.下列图形中既是轴对称图形又是中心对称图形的是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案