精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系xOy中,直线y=x经过点A,作ABx轴于点B,将ABO绕点B逆时针旋转60°得到CBD,若点B的坐标为(2,0),则点C的坐标为

【答案】(1,

【解析】

试题分析:过点C作CEx轴于点E,

OB=2,ABx轴,点A在直线y=x上,

AB=2,OA==4,

RTABO中,tanAOB==

∴∠AOB=60°,

∵△CBD是由ABO绕点B逆时针旋转60°得到,

∴∠D=AOB=OBD=60°,AO=CD=4,

∴△OBD是等边三角形,

DO=OB=2,DOB=COE=60°,

CO=CD﹣DO=2,

在RTCOE中,OE=COcosCOE=2×=1,

CE=COsinCOE=2×=

点C的坐标为(﹣1,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD是矩形,cotADB=,AB=16.点E在射线BC上,点F在线段BD上,且DEF=ADB.

(1)求线段BD的长;

(2)设BE=x,DEF的面积为y,求y关于x的函数关系式,并写出函数定义域;

(3)当DEF为等腰三角形时,求线段BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】图形的操作过程:
在图①中,将线段A1A2向右平移1个单位到B1B2 , 得到封闭图形A1A2B2B1(即阴影部分);
在图②中,将折线A1A2A3向右平移1个单位到B1B2B3 , 得到封闭图形A1A2A3B3B2B1(即阴影部分).

(1)在图③中,请你类似地画一条有两个折点的折线,同样向右平移1个单位,从而得到一个封闭图形,并用斜线画出阴影;

(2)请你分别写出上述三个图形中除去阴影部分后剩余部分的面积:
S1= , S2= , S3=
(3)联想与探索:
如图④在一块矩形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位),请你猜想空白部分表示的草地面积是多少并说明你的猜想是正确的.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有理数﹣4的绝对值等于(  )

A. 4B. 4C. 0D. ±4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),AB∥CD,猜想∠BPD与∠B,∠D的关系,说出理由.
解:猜想∠BPD+∠B+∠D=360°
理由:过点P作EF∥AB,
∴∠B+∠BPE=180°(两直线平行,同旁内角互补)
∵AB∥CD,EF∥AB,
∴EF∥CD,(如果两条直线都和第三条直线平行,那么这两条直线也互相平行.)
∴∠EPD+∠D=180°(两直线平行,同旁内角互补)
∴∠B+∠BPE+∠EPD+∠D=360°
∴∠B+∠BPD+∠D=360°
(1)依照上面的解题方法,观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B,∠D的关系,并说明理由.
(2)观察图(3)和(4),已知AB∥CD,猜想图中的∠BPD与∠B,∠D的关系,不需要说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法中正确的是(
A.9的平方根是3
B. 的算术平方根是±2
C. 的算术平方根是4
D. 的平方根是±2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在平行四边形ABCD中,AB=3cm,BC=5cm,ACAB.ACD沿AC的方向匀速平移得到PNM,速度为1cm/s;同时,点Q从点C出发,沿着CB方向匀速移动,速度为1cm/s;当PNM停止平移时,点Q也停止移动,如图.设移动时间为t(s)(0<t<4).连接PQ、MQ、MC.解答下列问题:

(1)当t为何值时,PQAB?

(2)当t=3时,求QMC的面积;

(3)是否存在某一时刻t,使PQMQ?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】同一平面内,两条不重合的直线的位置关系是(  )
A.平行或垂直
B.平行或相交
C.平行、相交或垂直
D.相交

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m,宽为n )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长和是(
A.4n
B.4m
C.2(m+n)
D.4(m﹣n)

查看答案和解析>>

同步练习册答案