精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,D是边AB上一点,E是边AC的中点,作CFABDE的延长线于点F

1)证明:△ADE≌△CFE

2)若∠B=∠ACBCE5CF7,求DB

【答案】(1)见解析;(2)3

【解析】

(1)CFAB,可得 ,又由E是边AC的中点,可得ADECFE;

2)由(1)CF=AD=7,AE=CE=5,由∠B=ACB,可得AB=AC=2CE=10,可得DB的长.

解:

(1)证明:∵E是边AC的中点,

AE=CE .

又∵CFAB,

.

ADECFE,

ADECFE .

(2)解:∵ADECFECF=7,

CF=AD=7.

又∵∠B=ACB,

AB=AC.

E是边AC的中点,CE=5,

AC=2CE=10.

AB=10.

DB=ABAD=107=3.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某校为了调查八年级学生参加“乒乓”、“篮球”、“足球”、“排球”四项体育活动的人数,学校从八年级随机抽取了部分学生进行调查,根据调查结果制作了如下不完整的统计表、统计图:

请你根据以上信息解答下列各题:

1a b c

2)在扇形统计图中,排球所对应的圆心角是 度;

3)若该校八年级共有600名学生,试估计该校八年级喜欢足球的人数?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线 轴交于点 (点 分别在 轴的左右两侧)两点,与 轴的正半轴交于点 ,顶点为 ,已知点 .

(1)求点 的坐标;
(2)判断△ 的形状,并说明理由;
(3)将△ 沿 轴向右平移 个单位( )得到△ .△ 与△ 重叠部分(如图中阴影)面积为 ,求 的函数关系式,并写出自变量 的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,直线l1与坐标轴交于A,B两点,直线l2≠0)与坐标轴交于点C,D.

(1)求点A,B的坐标;

(2)如图,当=2时,直线l1,l2与相交于点E,求两条直线与轴围成的△BDE的面积;

(3)若直线l1,l2轴不能围成三角形,点P(a,b)在直线l2(k≠0)上,且点P在第一象限.

①求的值;

②若,,求的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:E在△ABCAC边的延长线上,D点在AB边上,DEBC于点F,DF=EF,BD=CE.求证:△ABC是等腰三角形(过DDG∥ACBCG)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将一副三角板放在同一平面内,使直角顶点重合于点O

(1)如图①,若∠AOB=155°,求∠AOD、BOC、DOC的度数.

(2)如图①,你发现∠AOD与∠BOC的大小有何关系?∠AOB与∠DOC有何关系?直接写出你发现的结论.

(3)如图②,当AOCBOD没有重合部分时,(2)中你发现的结论是否还仍然成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:为了测量某棵树的高度,小刚用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点,此时,竹竿与这一点距离6m,与树相距15m,那么这棵的高度为( )

A.5米
B.7米
C.7.5米
D.21米

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,ABCD,∠B70°,∠BCE20°,∠CEF130°,请判断ABEF的位置关系,并说明理由.

解:   ,理由如下:

ABCD

∴∠B=∠BCD,(   

∵∠B70°,

∴∠BCD70°,(   

∵∠BCE20°,

∴∠ECD50°,

∵∠CEF130°,

   +   180°,

EF   ,(   

ABEF.(   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O是矩形ABCD的对角线的交点,E,F,G,H分别是OA,OB,OC,OD上的点,且AE=BF=CG=DH.

(1)求证:四边形EFGH是矩形;

(2)若E,F,G,H分别是OA,OB,OC,OD的中点,且DG⊥AC,OF=2cm,求矩形ABCD的面积.

查看答案和解析>>

同步练习册答案