【题目】已知二次函数y=﹣x2+x+6及一次函数y=﹣x+m,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数(如图所示).
(1)求二次函数y=﹣x2+x+6的顶点坐标和x轴的交点坐标;
(2)直接写出新函数对应的解析式;
(3)当直线y=﹣x+m与新图象有四个交点时,求m的取值范围.
【答案】(1)顶点坐标为(,),和x轴的交点坐标(﹣2,0),(3,0);(2)当x<﹣2或x>3时,y=﹣x2+x+6;当﹣2≤x≤3时,y=x2﹣x﹣6;(3)m的取值范围为﹣6<m<﹣2.
【解析】
(1)令y=0,解方程﹣x2+x+6=0,可得与x轴交点坐标为(﹣2,0),(3,0),把解析式化成顶点式,即可求得顶点坐标;
(2)利用折叠的性质求出折叠部分的解析式为y=(x+2)(x﹣3),即y=x2﹣x﹣6(﹣2≤x≤3),故可得出新函数对应的解析式;
(3)求出直线y=﹣x+m经过点A(﹣2,0)时m的值和当直线y=﹣x+m与抛物线y=x2﹣x﹣6(﹣2≤x≤3)有唯一公共点时m的值,从而得到当直线y=﹣x+m与新图象有4个交点时,m的取值范围.
(1)如图,当y=0时,即﹣x2+x+6=0,
解得:x1=﹣2,x2=3,
则与x轴交点坐标为(﹣2,0),(3,0).
∵y=﹣x2+x+6=﹣(x)2,
∴顶点坐标为(,);
(2)将该二次函数在x轴上方的图象沿x轴翻折到x轴下方的部分图象的解析式为y=(x+2)(x﹣3),即y=x2﹣x﹣6(﹣2≤x≤3),
故当x<﹣2或x>3时,y=﹣x2+x+6;
当﹣2≤x≤3时,y=x2﹣x﹣6;
(3)当直线y=﹣x+m经过点A(﹣2,0)时,2+m=0,解得:m=﹣2;
当直线y=﹣x+m与抛物线y=x2﹣x﹣6(﹣2≤x≤3)有唯一公共点时,即方程x2﹣x﹣6=﹣x+m有两个相等的实数解,整理得:x2﹣6﹣m=0,
则△=-4(-6-m)=0
解得:m=﹣6,
所以当直线y=﹣x+m与新图象有4个交点时,m的取值范围为﹣6<m<﹣2.
科目:初中数学 来源: 题型:
【题目】如图,已知P是⊙O外一点,PO交圆O于点C,OC=CP=2,弦AB⊥OC,劣弧AB的度数为120°,连接PB.
(1)求BC的长;
(2)求证:PB是⊙O的切线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图网格图中,每个小正方形的边长均为1个单位,在Rt△ABC中,∠C=90°,AC=3,BC=4.
(1)试在图中作出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;
(2)若点B的坐标为(﹣3,5),试在图中画出直角坐标系,并直接写出A、C两点的坐标;
(3)根据(2)的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并直接写出点A2、B2、C2的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在菱形中,,点是射线上一动点,以为边向右侧作等边,点的位置随点的位置变化而变化.
(1)如图1,当点在菱形内部或边上时,连接,与的数量关系是 ,与的位置关系是 ;
(2)当点在菱形外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,
请说明理由(选择图2,图3中的一种情况予以证明或说理).
(3) 如图4,当点在线段的延长线上时,连接,若 , ,求四边形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,ED切⊙O于点C,AD交⊙O于点F,∠AC平分∠BAD,连接BF.
(1)求证:AD⊥ED;
(2)若CD=4,AF=2,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,将两个等腰三角形和拼合在一起,其中,,.
(1)操作发现
如图2,固定,把绕着顶点旋转,使点落在边上.
填空:线段与的关系是①位置关系:______;②数量关系:______
(2)变式探究
当绕点旋转到图3的位置时,(1)中的结论还成立吗?请说明理由;
(3)解决问题
如图4,已知线段,线段,以为边作一个正方形,连接,随着边的变化,线段的长也会发生变化.请直接写出线段的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=图象的两个交点.
(1)求一次函数和反比例函数的解析式;
(2)求△AOB的面积;
(3)观察图象,直接写出不等式kx+b﹣>0的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把一副扑克牌中的张黑桃牌(它们的正面牌面数字分别是、、)洗匀后正面朝下放在桌面上.
(1)如果从中随机抽取一张牌,那么牌面数字是的概率是多少?
(2)小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽出一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽出一张牌,记下牌面数字.当张牌面数字相同时,小王赢;当张牌面数字不相同时,则小李赢.现请你利用树形图或列表法分析游戏规则对双方是否公平?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本小题满分9分)
根据要求,解答下列问题.
(1)根据要求,解答下列问题.
①方程x2-2x+1=0的解为________________________;
②方程x2-3x+2=0的解为________________________;
③方程x2-4x+3=0的解为________________________;
…… ……
(2)根据以上方程特征及其解的特征,请猜想:
①方程x2-9x+8=0的解为________________________;
②关于x的方程________________________的解为x1=1,x2=n.
(3)请用配方法解方程x2-9x+8=0,以验证猜想结论的正确性.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com