【题目】在菱形中,,点是射线上一动点,以为边向右侧作等边,点的位置随点的位置变化而变化.
(1)如图1,当点在菱形内部或边上时,连接,与的数量关系是 ,与的位置关系是 ;
(2)当点在菱形外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,
请说明理由(选择图2,图3中的一种情况予以证明或说理).
(3) 如图4,当点在线段的延长线上时,连接,若 , ,求四边形的面积.
【答案】(1)BP=CE; CE⊥AD;(2)成立,理由见解析;(3) .
【解析】(1)①连接AC,证明△ABP≌△ACE,根据全等三角形的对应边相等即可证得BP=CE;②根据菱形对角线平分对角可得,再根据△ABP≌△ACE,可得,继而可推导得出 ,即可证得CE⊥AD;
(2)(1)中的结论:BP=CE,CE⊥AD 仍然成立,利用(1)的方法进行证明即可;
(3)连接AC交BD于点O,CE,作EH⊥AP于H,由已知先求得BD=6,再利用勾股定理求出CE的长,AP长,由△APE是等边三角形,求得, 的长,再根据,进行计算即可得.
(1)①BP=CE,理由如下:
连接AC,
∵菱形ABCD,∠ABC=60°,
∴△ABC是等边三角形,
∴AB=AC,∠BAC=60°,
∵△APE是等边三角形,
∴AP=AE ,∠PAE=60° ,
∴∠BAP=∠CAE,
∴△ABP≌△ACE,∴BP=CE;
②CE⊥AD ,
∵菱形对角线平分对角,
∴,
∵△ABP≌△ACE,
∴,
∵,
∴,
∴,
∴ ,
∴CF⊥AD ,即CE⊥AD;
(2)(1)中的结论:BP=CE,CE⊥AD 仍然成立,理由如下:
连接AC,
∵菱形ABCD,∠ABC=60°,
∴△ABC和△ACD都是等边三角形,
∴AB=AC,∠BAD=120° ,
∠BAP=120°+∠DAP,
∵△APE是等边三角形,
∴AP=AE , ∠PAE=60° ,
∴∠CAE=60°+60°+∠DAP=120°+∠DAP,
∴∠BAP=∠CAE,
∴△ABP≌△ACE,∴BP=CE,,
∴∠DCE=30° ,∵∠ADC=60°,
∴∠DCE+∠ADC=90° , ∴∠CHD=90° ,∴CE⊥AD,
∴(1)中的结论:BP=CE,CE⊥AD 仍然成立;
(3) 连接AC交BD于点O,CE,作EH⊥AP于H,
∵四边形ABCD是菱形,
∴AC⊥BD,BD平分∠ABC ,
∵∠ABC=60°,,
∴∠ABO=30° ,∴ , BO=DO=3,
∴BD=6,
由(2)知CE⊥AD,
∵AD∥BC,∴CE⊥BC,
∵ , ,
∴,
由(2)知BP=CE=8,∴DP=2,∴OP=5,
∴,
∵△APE是等边三角形,∴ , ,
∵,
∴,
=
=
=,
∴四边形ADPE的面积是 .
科目:初中数学 来源: 题型:
【题目】潼南绿色无公害蔬菜基地有甲、乙两种植户,他们种植了A、B两类蔬菜,两种植户种植的两类蔬菜的种植面积与总收入如下表:
种植户 | 种植A类蔬菜面积 (单位:亩) | 种植B类蔬菜面积 (单位:亩) | 总收入 (单位:元) |
甲 | 3 | 1 | 12500 |
乙 | 2 | 3 | 16500 |
说明:不同种植户种植的同类蔬菜每亩平均收入相等.
(1)求A、B两类蔬菜每亩平均收入各是多少元?
(2)某种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有租地方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了响应上海市市政府“绿色出行”的号召,减轻校门口道路拥堵的现状,王强决定改父母开车接送为自己骑车上学.已知他家离学校7.5千米,上下班高峰时段,驾车的平均速度比自行车平均速度快15千米/小时,骑自行车所用时间比驾车所用时间多小时,求自行车的平均速度?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知2辆A型车和1辆B型车载满货物一次可运货10吨.用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆和B型车b辆,一次运完,且每辆车都满载货物.根据以上信息解答下列问题:
(1)1辆A型车和1辆B型车载满货物一次分别可运货物多少吨?
(2)请帮助物流公司设计租车方案
(3)若A型车每辆车租金每次100元,B型车每辆车租金每次120元.请选出最省钱的租车方案,并求出最少的租车费.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是边长为1的正方形,E,F为BD所在直线上的两点.若AE=,∠EAF=135°,则以下结论正确的是( )
A. DE=1 B. tan∠AFO= C. AF= D. 四边形AFCE的面积为
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知双曲线和直线y=mx+n交于点A和B,B点的坐标是(2,﹣3),AC垂直y轴于点C,AC=.
(1)求双曲线和和直线的解析式.
(2)求△AOB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】操作思考:如图1,在平面直角坐标系中,等腰的直角顶点C在原点,将其绕着点O旋转,若顶点A恰好落在点处则的长为______;点B的坐标为______直接写结果
感悟应用:如图2,在平面直角坐标系中,将等腰如图放置,直角顶点,点,试求直线AB的函数表达式.
拓展研究:如图3,在直角坐标系中,点,过点B作轴,垂足为点A,作轴,垂足为点C,P是线段BC上的一个动点,点Q是直线上一动点问是否存在以点P为直角顶点的等腰,若存在,请求出此时P的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元。
(1)求第一批购进书包的单价是多少元?
(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com