【题目】如图,四边形ABCD是边长为1的正方形,E,F为BD所在直线上的两点.若AE=,∠EAF=135°,则以下结论正确的是( )
A. DE=1 B. tan∠AFO= C. AF= D. 四边形AFCE的面积为
科目:初中数学 来源: 题型:
【题目】在A地到B地的快速通道某隧道建设,将由甲,乙两个工程队共同施工完成,据调查得知:甲,乙两队单独完成这项上程所需天数之比为4:5,若先由甲,乙两队合作40天,剩下的工程再乙队做10天完成,
(1)求甲.乙两队单独完成这取工程各需多少天?
(2)若此项工程由甲队做m天,乙队n天完成,
①请用含m的式子表示n;
②已知甲队每天的施工费为15万元,乙队每天的施工费用为10万元,若工程预算的总费用不超过1150万元,甲队工作的天数与乙队工作的天数之和不超过90天.请问甲、乙两队各工作多少天,完成此项工程总费用最少?最少费用是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是某月的月历
(1)如图1,带阴影的方框中的9个数的和与方框中心的数有什么关系?并试着说明理由;
(2)如果将阴影的方框移至图2的位置,(1)中关系的关系还成立吗?并试着说明理由;
(3)不改变阴影方框的大小,将方框移动几个位置试一试,你能得出什么结论?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一副直角三角板(其中一个三角板的内角是45°,45°,90°,另一个是30°,60°,90°)
(1)如图①放置,AB⊥AD,∠CAE=_______,BC与AD的位置关系是__________;
(2)在(1)的基础上,再拿一个30°,60°,90°的直角三角板,如图②放置,将AC′边和AD边重合, AE是∠CAB′的角平分线吗,如果是,请加以说明,如果不是,请说明理由.
(3)根据(1)(2)的计算,请解决下列问题:
如图③∠BAD=90°,∠BAC=∠FAD= (是锐角),将一个45°,45°,90°直角三角板的一直角边与AD边重合,锐角顶点A与∠BAD的顶点重合,AE是∠CAF的角平分线吗?如果是,请加以说明,如果不是,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在菱形中,,点是射线上一动点,以为边向右侧作等边,点的位置随点的位置变化而变化.
(1)如图1,当点在菱形内部或边上时,连接,与的数量关系是 ,与的位置关系是 ;
(2)当点在菱形外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,
请说明理由(选择图2,图3中的一种情况予以证明或说理).
(3) 如图4,当点在线段的延长线上时,连接,若 , ,求四边形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD 是△ABC 的角平分线,DE,DF 分别是△BAD 和△ACD 的高,得到下列四个结论:①OA=OD;②AD⊥EF;③当∠A=90°时,四边形 AEDF 是正方形;④AE+DF=AF+DE.其中正确的是_________(填序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)动手操作:
如图①,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点处,折痕为EF,若∠ABE=20°,那么的度数为 。
(2)观察发现:
小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图②);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图③).小明认为△AEF是等腰三角形,你同意吗?请说明理由.
(3)实践与运用:
将矩形纸片ABCD 按如下步骤操作:将纸片对折得折痕EF,折痕与AD边交于点E,与BC边交于点F;将矩形ABFE与矩形EFCD分别沿折痕MN和PQ折叠,使点A、点D都与点F重合,展开纸片,此时恰好有MP=MN=PQ(如图④),求∠MNF的大小。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.
(1)数轴上点B表示的数是 ,点P表示的数是 (用含t的代数式表示);
(2)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发.求:
①当点P运动多少秒时,点P与点Q相遇?
②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com