精英家教网 > 初中数学 > 题目详情

【题目】如图,已知双曲线和直线y=mx+n交于点ABB点的坐标是(2﹣3),AC垂直y轴于点CAC=

1)求双曲线和和直线的解析式.

2)求△AOB的面积.

【答案】1y=﹣2x+12

【解析】

解:(1B2﹣3)在双曲线上,,解得k=﹣6

双曲线解析式为

∵AC=A的横坐标是A的横坐标

A的坐标是(4)。

AB在直线y=mx+n上,

,解得

直线的解析式为y=﹣2x+1

2)如图,设直线与x轴的交点为D

x=0时,﹣2x+1=0,解得x=D的坐标为(0)。∴OD=

1)把点B的坐标代入双曲线解析式,利用待定系数法求函数解析式解答;根据AC=可得点A的横坐标,然后求出点A的坐标,再利用待定系数法求函数解析式求解直线的解析式。

2)设直线与x轴的交点为D,利用直线的解析式求出点D的坐标,从而得到OD的长度,再根据,列式计算即可得解

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】列方程(或方程组)解应用题2019年是决胜全面建成小康社会、打好污染防治攻坚战的关键之年.为了解决垃圾回收最后一公里的难题,小黄狗智能垃圾分类回收环保公益项目通过大数据、人工智能和物联网等先进科技进驻小区、写字楼、学校、机关和社区等进行回收.某位小区居民装修房屋,在过去的一个月内投放纸类垃圾和塑料垃圾共82公斤,其中纸类垃圾的投放是塑料垃圾的8倍多10公斤,请问这位小区居民在过去的一个月内投放纸类垃圾和塑料垃圾分别是多少公斤?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是某月的月历

1)如图1,带阴影的方框中的9个数的和与方框中心的数有什么关系?并试着说明理由;

2)如果将阴影的方框移至图2的位置,(1)中关系的关系还成立吗?并试着说明理由;

3)不改变阴影方框的大小,将方框移动几个位置试一试,你能得出什么结论?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在菱形中,,是射线上一动点,以为边向右侧作等边,点的位置随点的位置变化而变化.

(1)如图1,当点在菱形内部或边上时,连接的数量关系是 的位置关系是

(2)当点在菱形外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,

请说明理由(选择图2,图3中的一种情况予以证明或说理).

(3) 如图4,当点在线段的延长线上时,连接,若 , ,求四边形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD ABC 的角平分线,DEDF 分别是BAD ACD 的高,得到下列四个结论:①OAOD;②ADEF;③当∠A90°时,四边形 AEDF 是正方形;④AE+DFAF+DE.其中正确的是_________(填序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某电视台的一档娱乐性节目中,在游戏PK环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA1、BB1、CC1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.

(1)若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA1的概率;

(2)请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1动手操作:

如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点处,折痕为EF,若ABE=20°,那么的度数为

2)观察发现:

小明将三角形纸片ABCABAC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到AEF(如图).小明认为AEF是等腰三角形,你同意吗?请说明理由.

3)实践与运用:

将矩形纸片ABCD 按如下步骤操作:将纸片对折得折痕EF,折痕与AD边交于点E,与BC边交于点F;将矩形ABFE与矩形EFCD分别沿折痕MNPQ折叠,使点A、点D都与点F重合,展开纸片,此时恰好有MP=MN=PQ(如图,MNF的大小。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M。

(1)若∠ACD=114°,求∠MAB的度数;

(2)若CN⊥AM,垂足为N,求证:△ACN≌△MCN。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在△ABC中,AB=AC,G为三角形外一点,且△GBC为等边三角形.

(1)求证:直线AG垂直平分BC;

(2)以AB为一边作等边△ABE(如图2),连接EG、EC,试判断△EGC是否构成直角三角形?请说明理由.

查看答案和解析>>

同步练习册答案