精英家教网 > 初中数学 > 题目详情

【题目】如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1 , 边B1C1与CD交于点O,则四边形AB1OD的面积是(

A.
B.
C.
D. ﹣1

【答案】D
【解析】方法一:
解:连接AC1

∵四边形AB1C1D1是正方形,
∴∠C1AB1= ×90°=45°=∠AC1B1
∵边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1
∴∠B1AB=45°,
∴∠DAB1=90°﹣45°=45°,
∴AC1过D点,即A、D、C1三点共线,
∵正方形ABCD的边长是1,
∴四边形AB1C1D1的边长是1,
在Rt△C1D1A中,由勾股定理得:AC1= =
则DC1= ﹣1,
∵∠AC1B1=45°,∠C1DO=90°,
∴∠C1OD=45°=∠DC1O,
∴DC1=OD= ﹣1,
∴SADO= ×ODAD=
∴四边形AB1OD的面积是=2× = ﹣1,
方法二:
解:∵四边形ABCD是正方形,
∴AC= ,∠OCB1=45°,
∴CB1=OB1
∵AB1=1,
∴CB1=OB1=AC﹣AB1= ﹣1,
∴SOB1C= OB1CB1= ﹣1)2
∵SADC= ADAC= ×1×1=
∴S四边形AB1OD=SADC﹣SOB1C= ﹣1)2= ﹣1;
故选:D.
连接AC1 , AO,根据四边形AB1C1D1是正方形,得出∠C1AB1=∠AC1B1=45°,求出∠DAB1=45°,推出A、D、C1三点共线,在Rt△C1D1A中,由勾股定理求出AC1 , 进而求出DC1=OD,根据三角形的面积计算即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】菱形ABCD中,对角线AC、BD交于点O,且AC=2BD,以AD为斜边在菱形ABCD同侧作Rt△ADE.
(1)如图1,当点E落在边AB上时.
①求证:∠BDE=∠BAO;
②求 的值;
③当AF=6时,求DF的长.

(2)如图2,当点E落在菱形ABCD内部,且AE=DE时,猜想OE与OB的数量关系并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y= 在第一象限的图象经过点B.若OA2﹣AB2=12,则k的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,ABCD中,BC=8cm,CD=4cm,∠B=60°,点M从点D出发,沿DA方向匀速运动,速度为2cm/s,点N从点B出发,沿BC方向匀速运动,速度为1cm/s,过M作MF⊥CD,垂足为F,延长FM交BA的延长线于点E,连接EN,交AD于点O,设运动时间为t(s)(0<t<4),解答下列问题:

(1)当t为何值时,△AEM≌△DFM?
(2)连接AN,MN,设四边形ANME的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使四边形ANME的面积是ABCD面积的 ?若存在,求出相应的t值,若不存在,说明理由;
(4)连接AC,交EN于点P,当EN⊥AD时,求线段OP的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校为丰富学生的校园生活,准备从某体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买1个足球和2个篮球共需210元.购买2个足球和6个篮球共需580元.
(1)购买一个足球、一个篮球各需多少元?
(2)根据学校的实际情况,需从该体育用品商店一次性购买足球和篮球共100个.要求购买足球和篮球的总费用不超过6000元,这所中学最多可以购买多少个篮球?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,AB=2,∠ABC=60°,对角线AC、BD相交于点O,将对角线AC所在的直线绕点O顺时针旋转角α(0°<α<90°)后得直线l,直线l与AD、BC两边分别相交于点E和点F.

(1)求证:△AOE≌△COF;
(2)当α=30°时,求线段EF的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1.反比例函数y= 的图象经过A,B两点,则菱形ABCD的面积为(

A.2
B.4
C.2
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在等腰三角形ABC中,AB=AC,O为AB上一点,以O为圆心,OB长为半径的圆交BC于D,DE⊥AC交AC于E.

(1)求证:DE是⊙O的切线;
(2)若⊙O与AC相切于F,AB=AC=8cm,sinA= ,求⊙O的半径的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了促进营业额不断增长,某大型超市决定购进甲、乙两种商品,已知甲种商品每件进价为150元,售价为168元;乙种商品每件进价为120元,售价为140元,该超市用42000元购进甲、乙两种商品,销售完后共获利5600元.
(1)该超市购进甲、乙两种商品各多少件?
(2)超市第二次以原价购进甲、乙两种商品共400件,且购进甲种商品的件数多于乙种商品的件数,要使第二次经营活动的获利不少于7580元,共有几种进货方案?写出利润最大的进货方案.

查看答案和解析>>

同步练习册答案