精英家教网 > 初中数学 > 题目详情

【题目】在Rt△ABC,∠C=90°,D为AB边上一点,点M、N分别在BC、AC边上,且DM⊥DN.作MF⊥AB于点F,NE⊥AB于点E.

(1)特殊验证:如图1,若AC=BC,且D为AB中点,求证:DM=DN,AE=DF;
(2)拓展探究:若AC≠BC.
①如图2,若D为AB中点,(1)中的两个结论有一个仍成立,请指出并加以证明;
②如图3,若BD=kAD,条件中“点M在BC边上”改为“点M在线段CB的延长线上”,其它条件不变,请探究AE与DF的数量关系并加以证明.

【答案】
(1)证明:若AC=BC,则△ABC为等腰直角三角形,

如答图1所示,连接CD,则CD⊥AB,又∵DM⊥DN,∴∠1=∠2.

在△AND与△CMD中,

∴△AND≌△CMD(ASA),

∴DN=DM.

∵∠4+∠1=90°,∠1+∠3=90°,∴∠4=∠3,

∵∠1+∠3=90°,∠3+∠5=90°,∴∠1=∠5,

在△NED与△DFM中,

∴△NED≌△DFM(ASA),

∴NE=DF.

∵△ANE为等腰直角三角形,∴AE=NE,∴AE=DF


(2)①答:AE=DF.

证法一:由(1)证明可知:△DEN∽△MFD

,即MFEN=DEDF.

同理△AEN∽△MFB,

,即MFEN=AEBF.

∴DEDF=AEBF,

∴(AD﹣AE)DF=AE(BD﹣DF),

∴ADDF=AEBD,∴AE=DF.

证法二:如答图2所示,过点D作DP⊥BC于点P,DQ⊥AC于点Q.

∵D为AB中点,

∴DQ=PC=PB.

易证△DMF∽△NDE,∴

易证△DMP∽△DNQ,∴

易证△AEN∽△DPB,∴

,∴AE=DF.

②答:DF=kAE.

证法一:由①同理可得:DEDF=AEBF,

∴(AE﹣AD)DF=AE(DF﹣BD)

∴ADDF=AEBD

∵BD=kAD

∴DF=kAE.

证法二:如答图3,过点D作DP⊥BC于点P,DQ⊥AC于点Q.

易证△AQD∽△DPB,得 ,即PB=kDQ.

由①同理可得:

又∵

∴DF=kAE


【解析】(1)连接CD,首先证明△AND≌△CMD,依据全等三角形的性质可得到DN=DM,然后再证明△NED≌△DFM,从而可得到DF=NE,然后依据等腰三角形的性质可得到AE=NE=DF;
(2)①若D为AB中点,则△DEN∽△MFD,△AEN∽△MFB,然后依据相似三角形的性质列出比例式,接下来,由线段比例关系可以证明AE=DF结论依然成立;②若BD=kAD,证明思路与①类似.
【考点精析】认真审题,首先需要了解相似三角形的判定与性质(相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD的内角∠DCB与外角∠ABE的平分线相交于点F.

1)若BFCD,∠ABC=80°,求∠DCB的度数;

2)已知四边形ABCD中,∠A=105,∠D=125,求∠F的度数;

3)猜想∠F、∠A、∠D之间的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为建设京西绿色走廊,改善永定河水质,某治污公司决定购买10台污水处理设备.现有AB两种型号的设备,其中每台的价格与月处理污水量如下表:

经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.

(1)求xy的值;

(2)如果治污公司购买污水处理设备的资金不超过105万元,求该治污公司有哪几种购买方案;

(3)在(2)的条件下,如果月处理污水量不低于2040吨,为了节约资金,请为该公司设计一种最省钱的购买方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明和小亮分别从甲地和乙地同时出发,沿同一条路相向而行,小明开始跑步,中途改为步行,到达乙地恰好用小亮骑自行车以的速度直接到甲地,两人离甲地的路程与各自离开出发地的时间之间的函数图象如图所示,

甲、乙两地之间的路程为______m,小明步行的速度为______

求小亮离甲地的路程y关于x的函数表达式,并写出自变量x的取值范围;

求两人相遇的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图.

请你根据以上的信息,回答下列问题:
(1)本次共调查了名学生,其中最喜爱戏曲的有人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是
(2)根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知有甲、乙两个长方形,它们的边长如图所示(m为正整数),面积分别为S1S2

1)请比较S1S2的大小: S1   S2

2)若一个正方形与甲的周长相等.

求该正方形的边长(用含m的代数式表示);

若该正方形的面积为S3,试探究:S3S1的差(即S3S1)是否为常数?若为常数,求出这个常数;如果不是,请说明理由;

3)若满足条件0n|S1S2|的整数n有且只有8个,直接写出m的值并分别求出S1S2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,,按此规律第100个图中共有点的个数是

A. 15151B. 15152C. 15153D. 15154

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面是某同学对多项式(x24x+2)(x24x+6+4进行因式分解的过程.

解:设x24x=y

原式=y+2)(y+6+4 (第一步)

=y2+8y+16 (第二步)

=y+42(第三步)

=x24x+42(第四步)

回答下列问题:

1)该同学第二步到第三步运用了因式分解的_______

A.提取公因式

B.平方差公式

C.两数和的完全平方公式

D.两数差的完全平方公式

2)该同学因式分解的结果是否彻底?________.(填彻底不彻底)若不彻底,请直接写出因式分解的最后结果_________

3)请你模仿以上方法尝试对多项式(x22x)(x22x+2+1进行因式分解.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=m (x﹣1)( x﹣4)的图象与x轴交于A,B两点(点A在点B的左边),顶点为C,将该二次函数的图象关于x轴翻折,所得图象的顶点为D.若四边形ACBD为正方形,则m的值为

查看答案和解析>>

同步练习册答案