分析 根据等边三角形性质求出OA=OB=AB=4,根据平行四边形的性质求出OA=OC,OB=OD,得出AC=BD=8,证出四边形ABCD是矩形,得出∠ABC=90°,由勾股定理求出BC即可.
解答 解:∵△ABO是等边三角形,
∴OA=OB=AB=4,
∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,
∴OA=OC=OB=OD,
∴AC=BD=8,
∴四边形ABCD是矩形,
∴∠ABC=90°,
由勾股定理得:BC=$\sqrt{A{C}^{2}-A{B}^{2}}$=$\sqrt{{8}^{2}-{4}^{2}}$=4$\sqrt{3}$.
点评 本题考查了等边三角形的性质、平行四边形的性质,勾股定理,矩形的判定与性质;熟练掌握平行四边形和等边三角形的性质,证明四边形是矩形是解决问题的关键.
科目:初中数学 来源: 题型:选择题
| A. | ①② | B. | ①②④ | C. | ②③④ | D. | ①②③④ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | AC=DF | B. | ∠DEF=90° | C. | △ABC≌△DEF | D. | EC=CF |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | (1,7) | B. | (1,1) | C. | (-3,7) | D. | (-3,1) |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com