精英家教网 > 初中数学 > 题目详情
19.有下列结论:
①若a+b+c=0,则abc≠0;
②若a(x-1)=b(x-1)有唯一的解,则a≠b;
③若b=2a,则关于x的方程ax+b=0(a≠0)的解为x=-$\frac{1}{2}$;
④若a+b+c=1,且a≠0,则x=1一定是方程ax+b+c=1的解;
其中结论正确的个数有(  )
A.4个B.3个C.2个D.1个

分析 各项整理得到结果,即可作出判断.

解答 解:①错误,当a=0,b=1,c=-1时,a+b+c=0+1-1=0,但是abc=0;
②正确,方程整理得:(a-b)x=a-b,
由方程有唯一解,得到a-b≠0,即a≠b,此时解为x=1;
③错误,由a≠0,b=2a,方程解得:x=-$\frac{b}{a}$=-2;
④正确,把x=1,a+b+c=1代入方程左边得:a+b+c=1,右边=1,故若a+b+c=1,且a≠0,则x=1一定是方程ax+b+c=1的解,
故选C

点评 此题考查了方程的解,方程的解即为能使方程左右两边相等的未知数的值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.(1)(-5$\frac{1}{3}$)+3$\frac{5}{6}$;         
(2)$\frac{13}{5}$-($\frac{1}{6}$-0.4)+(-2.75-$\frac{1}{12}$);
(3)1$\frac{1}{3}$÷(-1$\frac{7}{9}$);                
(4)-2.5÷(-$\frac{5}{8}$)×$\frac{1}{{3}^{2}}$÷(-$\frac{2}{3}$)2
(5)2$\frac{1}{2}$÷(0.25-$\frac{2}{3}$+$\frac{1}{3}$);      
(6)-14-(1-0.5)×$\frac{1}{3}$×[2-(-3)2].

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知正比例函数y=$\frac{1}{2}$x的图象与一次函数y=kx-3的图象相交于点(2,a).
(1)求a的值.
(2)求一次函数的表达式.
(3)在同一坐标系中,画出这两个函数的图象.
(4)求已知两函数y=$\frac{1}{2}$x、y=kx-3与y轴围成的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.单项式$\frac{1}{2}ah$的系数是2,次数是$\frac{1}{2}$.错误.(判断对错)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知二次函数y=ax2+bx+c图象的顶点是(-1,2),且过点(0,$\frac{3}{2}$).求二次函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,点G是△ABC的重心,下列结论:①$\frac{DG}{GB}=\frac{1}{2}$;②$\frac{AE}{EB}=\frac{ED}{BC}$;③△EDG∽△CGB;④$\frac{{S}_{四边形AEGD}}{{S}_{△ABC}}=\frac{1}{3}$.其中正确的个数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.下列用数轴表示不等式2-x≤1的解集正确的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,△ABC是边长为5cm的等边三角形,点P,Q分别从顶点A,B同时出发,沿线段AB,BC运动,且它们的速度都为1cm/s.当点P到达点B时,P,Q两点停止运动,设点P的运动时间为t(s).
(1)当t为何值时,△PBQ是直角三角形?
(2)连接AQ、CP,相交于点M,则点P,Q在运动的过程中,∠CMQ会变化吗?若变化,则说明理由;若不变,请求出它的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知:a、b互为相反数,c、d互为倒数,x的绝对值等于2,试求代数式x2-(a+b+cd)•x+(a+b)2010+(-cd)2009的值.

查看答案和解析>>

同步练习册答案