【题目】如图,点B(0,b),点A(a,0)分别在y轴、x轴正半轴上,且满足+(b2﹣16)2=0.
(1)求A、B两点的坐标,∠OAB的度数;
(2)如图1,已知H(0,1),在第一象限内存在点G,HG交AB于E,使BE为△BHG的中线,且S△BHE=3,
①求点E到BH的距离;
②求点G的坐标;
(3)如图2,C,D是y轴上两点,且BC=OD,连接AD,过点O作MN⊥AD于点N,交直线AB于点M,连接CM,求∠ADO+∠BCM的值.
【答案】(1)、45°;(2)、2;(4,5);(3)、180°.
【解析】
试题分析:(1)、根据非负数的性质,得出关于a、b的方程组,求得a、b即可得到A、B两点的坐标,最后利用等腰三角形的性质得出∠OAB的度数;(2)、作EF⊥y轴于F,构造等腰直角三角形BEF,进而求出E点坐标,利用△BHE的面积即可得到点E到BH的距离;设G(m,n),根据BE为△BHG的中线,求得点G坐标即可;(3)、过点B作BK⊥OC,交MN于点K,然后证明△OBK≌△OAD、△MKB≌△MCB,从而可证明∠ADO+∠BCM=180°.
试题解析:(1)、∵+(b2﹣16)2=0, ∴a﹣b=0,b2﹣16=0, 解得:b=4,a=4或b=﹣4,a=﹣4,
∵A点在x轴正半轴,B点在y轴正半轴上, ∴b=4,a=4, ∴A(4,0),B(0,4),
∴OA=OB=4, ∴∠OAB=45°;
(2)、①如图1,作EF⊥y轴于F, ∵B(0,4),H(0,1), ∴BH=OB﹣OH=4﹣1=3,
∵OA=OB=4, ∴△OAB为等腰直角三角形, ∴∠OBA=∠OAB=45°, ∴△BFE为等腰直角三角形,
∴BF=EF=2, ∴OF=OB﹣BF=4﹣1=3, ∴E(2,3), ∴E(2,3)为GH的中点, ∵S△BHE=3,
∴BH×EF=3,即×3×EF=3, ∴EF=2, 故点E到BH的距离为2.
②设G(m,n),则∵BE为△BHG的中线, ∴,, 解得m=4,n=5,
∴G点坐标为(4,5);
(3)、如图2,过点B作BK⊥OC,交MN于点K,则∠KBO=∠DOA, ∵MN⊥AD,
∴∠DON+∠NOA=90°, ∴∠3+∠NOA=90°, ∵∠NOA+∠1=90°, ∴∠3=∠1,
在△KOB和△OAD中, , ∴△KOB≌△OAD(ASA), ∴KB=OD,∠2=∠7,
∵BC=OD, ∴KB=BC, ∵OB=OA,∠BOA=90°, ∴∠OBA=45°, ∴∠9=∠8=45°,
在△MKB和△MCB中, , ∴△MKB≌△MCB(SAS), ∴∠6=∠5,
∵∠7+∠6=180°, ∴∠2+∠5=180°,即∠ADO+∠BCM=180°.
科目:初中数学 来源: 题型:
【题目】温州某服装店十月份的营业额为8000元,第四季度的营业额共为40000元.如果平均每月的增长率为x,则由题意可列出方程为( )
A.8000(1+x)2=40000
B.8000+8000(1+x)2=40000
C.8000+8000×2x=40000
D.8000[1+(1+x)+(1+x)2]=40000
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】九年级(1)班10名同学在某次“1分钟仰卧起坐”的测试中,成绩如下(单位:次):39,45,40,44,37,39,46,40,41,39,那么这组数据的众数、中位数分别是_____________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点P为∠EAF平分线上一点,PB⊥AE于B,PC⊥AF于C,点M,N分别是射线AE,AF上的点,且PM=PN.
(1)如图1,当点M在线段AB上,点N在线段AC的延长线上时,求证:BM=CN;
(2)在(1)的条件下,直接写出线段AM,AN与AC之间的数量关系 ;
(3)如图2,当点M在线段AB的延长线上,点N在线段AC上时,若AC:PC=2:1,且PC=4,求四边形ANPM的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列各式由左边到右边的变形中,是分解因式的为( )
A.a(x+y)=ax+ay
B.x2﹣4x+4=x(x﹣4)+4
C.x2﹣16+3x=(x+4)(x﹣4)+3x
D.10x2﹣5x=5x(2x﹣1)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com