【题目】如图,四边形是平行四边形,,,垂足分别为、,连接.
求证:(1);(2).
【答案】(1)见解析;(2)见解析
【解析】
(1)根据平行四边形的性质得出∠B=∠D,再利用∠AEB=∠AFD=90°,得出△ABE∽△ADF,进而得出ABAF=AEAD;
(2)根据平行四边形的性质得出AB∥CD,进而得出∠B=∠EAF,即可得出 ,即可得出△ABC∽△EAF,即可得出答案.
证明:(1)∵四边形ABCD是平行四边形,
∴∠B=∠D,
∵AE⊥BC,AF⊥CD,
∴∠AEB=∠AFD=90°,
∴△ABE∽△ADF,
∴ ,
即ABAF=AEAD;
(2)∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠BAF=∠AFD=90°,
∵∠B+∠BAE=90°,∠EAF+∠BAE=90°,
∴∠B=∠EAF,
∵△ABE∽△ADF,
∴,
又∵AD=BC,
∴,
∴△ABC∽△EAF,
∴.
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2+c过点(﹣2,2),(4,5),过定点F(0,2)的直线l:y=kx+2与抛物线交于A、B两点,点B在点A的右侧,过点B作x轴的垂线,垂足为C.
(1)求抛物线的解析式;
(2)当点B在抛物线上运动时,判断线段BF与BC的数量关系 (>、<、=),并证明你的判断;
(3)P为y轴上一点,以B、C、F、P为顶点的四边形是菱形,设点P(0,m),求自然数m的值;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,点E是BC的中点,连接DE,过点A作AG⊥ED交DE于点F,交CD于点G.
(1)证明:△ADG≌△DCE;(2)连接BF,证明:AB=FB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数图象上部分点的横坐标与纵坐标的对应值如表所示:
··· | -3 | -2 | -1 | 0 | ··· | |
··· | 0 | -3 | -4 | -3 | ··· |
直接写出不等式的解集是____________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是抛物线图象的一部分,顶点,与轴的一个交点,直线与抛物线交于,两点,下列结论:
①;
②;
③当时,有;
④方程有两个相等的实数根;
⑤代数式的值是6.
其中正确的序号有( )
A.①③④B.②④C.③⑤D.②④⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线经过两点A(﹣3,0),B(0,3),且其对称轴为直线x=﹣1.
(1)求此抛物线的解析式.
(2)若点Q是对称轴上一动点,当OQ+BQ最小时,求点Q的坐标.
(3)若点P是抛物线上点A与点B之间的动点(不包括点A,点B),求△PAB面积的最大值,并求出此时点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:若某抛物线上有两点A、B关于原点对称,则称该抛物线为“完美抛物线”.已知二次函数y=ax2-2mx+c(a,m,c均为常数且ac≠0)是“完美抛物线”:
(1)试判断ac的符号;
(2)若c=-1,该二次函数图象与y轴交于点C,且S△ABC=1.
①求a的值;
②当该二次函数图象与端点为M(-1,1)、N(3,4)的线段有且只有一个交点时,求m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com