精英家教网 > 初中数学 > 题目详情

【题目】如图1,已知正方形ABCD的边长为1,点E在边BC上,若∠AEF=900,且EF交正方形外角的平分线CF于点F

1)图1中若点E是边BC的中点,我们可以构造两个三角形全等来证明AE=EF,请叙述你的一个构造方案,并指出是哪两个三角形全等(不要求证明);

2)如图2,若点E在线段BC上滑动(不与点BC重合).

①AE=EF是否总成立?请给出证明;

在如图2的直角坐标系中,当点E滑动到某处时,点F恰好落在抛物线上,求此时点F的坐标.

【答案】1△AGE△ECF2成立

【解析】

1)取AB的中点G,连接EG,利用ASA能得到△AGE△ECF全等.

2AB上截取AG=EC,由ASA证得△AGE≌△ECF即可证得AE=EF

过点FFH⊥x轴于H,根据FH=BE=CHBH=a,则FH=a1,然后表示出点F的坐标,根据点F恰好落在抛物线上得到有关a的方程求得a值即可求得点F的坐标.

解:(1)如图,取AB的中点G,连接EG,则△AGE△ECF全等.

2若点E在线段BC上滑动时AE=EF总成立.证明如下:如图,

AB上截取AG=EC

∵AB=BC

∴BG=BE

∴△GBE是等腰直角三角形.

∴∠AGE=180°45°=135°

∵CF平分正方形的外角,

∴∠ECF=135°

∴∠AGE=∠ECF

∵∠BAE+∠AEB=∠CEF+∠AEB=90°

∴∠BAE=∠CEF

∴△AGE≌△ECFASA).

∴AE=EF

过点FFH⊥x轴于H

知,FH=BE=CH,设BH=a,则FH=a1

F的坐标为Faa1).

F恰好落在抛物线上,

∴a2=2(负值不合题意,舍去).

F的坐标为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,学校准备在教学楼后面搭建一个简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为19 m),另外三边利用学校现有总长38 m的铁栏围成.

(1)若围成的面积为180 m2,试求出自行车车棚的长和宽;

(2)能围成面积为200 m2的自行车车棚吗?如果能,请你给出设计方,如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A,B是反比例函数y=(k>0,x>0)图象上的两点,BCx轴,交y轴于点C,动点P从坐标原点O出发,沿OABC(图中“→”所示路线)匀速运动,终点为C,过P作PMx轴,垂足为M.设三角形OMP的面积为S,P点运动时间为t,则S关于x的函数图象大致为(

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:ab<0,b24a0<a+b+c<2,0<b<1,当x>﹣1时,y>0,其中正确结论的个数是

A.5个 B.4个 C.3个 D.2个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,边上,的中点,连接并延长交,则______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:如果三角形的两个内角满足,那么称这样的三角形为“类直角三角形”.

尝试运用

1)如图1,在中,的平分线.

①证明是“类直角三角形”;

②试问在边上是否存在点(异于点),使得也是“类直角三角形”?若存在,请求出的长;若不存在,请说明理由.

类比拓展

2)如图2内接于,直径,弦,点是弧上一动点(包括端点),延长至点,连结,且,当是“类直角三角形”时,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交ADE,交BA的延长线于点F.

1)求证:.

2)如果,求线段PC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】六一儿童节,小文到公园游玩.看到公园的一段人行弯道MN(不计宽度),如图,它与两面互相垂直的围墙OP、OQ之间有一块空地MPOQN(MP⊥OP,NQ⊥OQ),他发现弯道MN上任一点到两边围墙的垂线段与围墙所围成的矩形的面积都相等,比如:A、B、C是弯道MN上的三点,矩形ADOG、矩形BEOH、矩形CFOI的面积相等.爱好数学的他建立了平面直角坐标系(如图),图中三块阴影部分的面积分别记为S1、S2、S3,并测得S2=6(单位:平方米).OG=GH=HI.

(1)求S1和S3的值;

(2)设T(x,y)是弯道MN上的任一点,写出y关于x的函数关系式;

(3)公园准备对区域MPOQN内部进行绿化改造,在横坐标、纵坐标都是偶数的点处种植花木(区域边界上的点除外),已知MP=2米,NQ=3米.问一共能种植多少棵花木?

查看答案和解析>>

同步练习册答案