【题目】如图1,已知正方形ABCD的边长为1,点E在边BC上,若∠AEF=900,且EF交正方形外角的平分线CF于点F
(1)图1中若点E是边BC的中点,我们可以构造两个三角形全等来证明AE=EF,请叙述你的一个构造方案,并指出是哪两个三角形全等(不要求证明);
(2)如图2,若点E在线段BC上滑动(不与点B,C重合).
①AE=EF是否总成立?请给出证明;
②在如图2的直角坐标系中,当点E滑动到某处时,点F恰好落在抛物线上,求此时点F的坐标.
【答案】(1)△AGE与△ECF(2)①成立②
【解析】
(1)取AB的中点G,连接EG,利用ASA能得到△AGE与△ECF全等.
(2)①在AB上截取AG=EC,由ASA证得△AGE≌△ECF即可证得AE=EF.
②过点F作FH⊥x轴于H,根据FH=BE=CH设BH=a,则FH=a-1,然后表示出点F的坐标,根据点F恰好落在抛物线上得到有关a的方程求得a值即可求得点F的坐标.
解:(1)如图,取AB的中点G,连接EG,则△AGE与△ECF全等.
(2)①若点E在线段BC上滑动时AE=EF总成立.证明如下:如图,
在AB上截取AG=EC,
∵AB=BC,
∴BG=BE.
∴△GBE是等腰直角三角形.
∴∠AGE=180°-45°=135°.
又∵CF平分正方形的外角,
∴∠ECF=135°.
∴∠AGE=∠ECF.
又∵∠BAE+∠AEB=∠CEF+∠AEB=90°,
∴∠BAE=∠CEF.
∴△AGE≌△ECF(ASA).
∴AE=EF.
②过点F作FH⊥x轴于H,
由①知,FH=BE=CH,设BH=a,则FH=a-1.
∴点F的坐标为F(a,a-1).
∵点F恰好落在抛物线上,
∴.
∴a2=2.∴(负值不合题意,舍去).
∴.∴点F的坐标为.
科目:初中数学 来源: 题型:
【题目】如图,学校准备在教学楼后面搭建一个简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为19 m),另外三边利用学校现有总长38 m的铁栏围成.
(1)若围成的面积为180 m2,试求出自行车车棚的长和宽;
(2)能围成面积为200 m2的自行车车棚吗?如果能,请你给出设计方,如果不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A,B是反比例函数y=(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过P作PM⊥x轴,垂足为M.设三角形OMP的面积为S,P点运动时间为t,则S关于x的函数图象大致为( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0,其中正确结论的个数是
A.5个 B.4个 C.3个 D.2个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:如果三角形的两个内角与满足,那么称这样的三角形为“类直角三角形”.
尝试运用
(1)如图1,在中,,,,是的平分线.
①证明是“类直角三角形”;
②试问在边上是否存在点(异于点),使得也是“类直角三角形”?若存在,请求出的长;若不存在,请说明理由.
类比拓展
(2)如图2,内接于,直径,弦,点是弧上一动点(包括端点,),延长至点,连结,且,当是“类直角三角形”时,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】六一儿童节,小文到公园游玩.看到公园的一段人行弯道MN(不计宽度),如图,它与两面互相垂直的围墙OP、OQ之间有一块空地MPOQN(MP⊥OP,NQ⊥OQ),他发现弯道MN上任一点到两边围墙的垂线段与围墙所围成的矩形的面积都相等,比如:A、B、C是弯道MN上的三点,矩形ADOG、矩形BEOH、矩形CFOI的面积相等.爱好数学的他建立了平面直角坐标系(如图),图中三块阴影部分的面积分别记为S1、S2、S3,并测得S2=6(单位:平方米).OG=GH=HI.
(1)求S1和S3的值;
(2)设T(x,y)是弯道MN上的任一点,写出y关于x的函数关系式;
(3)公园准备对区域MPOQN内部进行绿化改造,在横坐标、纵坐标都是偶数的点处种植花木(区域边界上的点除外),已知MP=2米,NQ=3米.问一共能种植多少棵花木?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com