精英家教网 > 初中数学 > 题目详情

【题目】如图,在正方形ABCD中,AD=2 ,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为

【答案】6 ﹣10
【解析】解:∵四边形ABCD是正方形, ∴∠ABC=90°,
∵把边BC绕点B逆时针旋转30°得到线段BP,
∴PB=BC=AB,∠PBC=30°,
∴∠ABP=60°,
∴△ABP是等边三角形,
∴∠BAP=60°,AP=AB=2
∵AD=2
∴AE=4,DE=2,
∴CE=2 ﹣2,PE=4﹣2
过P作PF⊥CD于F,
∴PF= PE=2 ﹣3,
∴三角形PCE的面积= CEPF= ×(2 ﹣2)×(4﹣2 )=6 ﹣10,
所以答案是:6 ﹣10.

【考点精析】通过灵活运用正方形的性质和旋转的性质,掌握正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形;①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,Rt△ABC三个顶点都在格点上,点A、B、C的坐标分别为A(﹣1,3),B(﹣3,1),C(﹣1,1).请解答下列问题:

(1)画出△ABC关于y轴对称的△A1B1C1 , 并写出B1的坐标.
(2)画出△A1B1C1绕点C1顺时针旋转90°后得到的△A2B2C1 , 并求出点A1走过的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为( )

A.
B.2
C.
D.10﹣5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,DBC的中点,过D点的直线GFACF,交AC的平行线BGG点,DE⊥DF,交AB于点E,连结EGEF

1)求证:BGCF

2)请你判断BE+CFEF的大小关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+b2 , 其中正确结论是(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,将△ABC绕点C按顺时针方向旋转n度后,得到△EDC,此时,点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC在直角坐标系中,

1)请写出△ABC各顶点的坐标;

2)若把△ABC向上平移2个单位,再向左平移1个单位得到△A′B′C′,写出A′B′C′的坐标,并在图中画出平移后图形;

3)求出△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠BAD=CAE=90°,AB=AD,AE=AC,AFCB,垂足为F.

(1)求证:△ABC≌△ADE;(图1)

(2)求∠FAE的度数;(图1)

(3)如图2,延长CFG点,使BF=GF,连接AG.求证:CD=CG;并猜想CD2BF+DE的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,∠BAC=120°,AD平分∠BAC,且AD=AB,若∠EDF=60°,其两边分别交边AB,AC于点E,F.

(1)求证:△ABD是等边三角形;

(2)求证:BE=AF.

查看答案和解析>>

同步练习册答案