精英家教网 > 初中数学 > 题目详情

【题目】计算:

123×-5--3÷

2)(-3×+8×-2-11÷-);

3)(-12--1×-24);

4-22-3+[1+-2×-1]

【答案】113;(20;(366;(42

【解析】

1)先算乘法和除法,再算加减法;

2)将除法转化为乘法后,运用乘法分配律计算;

3)先算乘方,并运用乘法分配律计算,最后计算加减法;

4)先算乘方,再算乘法,最后计算加减法.

解:(1)原式=-115+3×

=-115+128

=13

2)原式=-3×-8×+11×

=×-3-8+11

=0

3)原式

=1-33+56-90

=57-123

=-66

4)原式=×4-+1-×

=2-+1-

=3-

=2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知直线y=x+3与坐标轴分别交于点AB,点P在抛物线y=x2+4上,能使ABP为等腰三角形的点P的个数有(  )

A. 8 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在数轴上有三个点A、B、C,完成系列问题:

(1)将点B向右移动六个单位长度到点D,在数轴上表示出点D.

(2)在数轴上找到点E,使点EA、C两点的距离相等.并在数轴上标出点E表示的数.

(3)在数轴上有一点F,满足点F到点A与点F到点C的距离和是9,则点F表示的数是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司新研发一种办公室用壁挂式电磁日历,底板是一块长方形磁块,再用31枚圆柱形小铁片标上数字吸附在底板上作为日期,如图1200710月份日历

1)用长方形和正方形分别圈出相邻的3个数和9个数,若设圈出的数的中心数为a,用含a的整式表示这3个数的和与9个数的和,结果分别为      

2)用某种图形圈出相邻的5个数,使这5个数的和能表示成5a的形式,请在图2中画出一个这样的图形.

3)用平行四边形圈出相邻的四个数,是否存在这样的4个数使得a+b+c+d114?如果存在就求出来,不存在说明理由.

4)第一次翻动31枚日历铁片,第二次翻动其中的30枚,第三次翻动其中的29枚,……,第31次只翻动其中的一枚,按这样的方法翻动日历铁片,能否使铁板上所有的31枚铁片原来有数字的一面都朝下,试通过计算证明你的判断.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学从学生入学开始就积极开展环保教育,半学期后随机对部分学生的环保习惯养成情况进行了问卷调查,问卷中的环保习惯有:①随手关灯;②充电后及时拔充电器插头;③生活用水合理重复利用;④不用或少用一次性餐具;⑤少用塑料袋多用环保袋;⑥绿色出行,同学勾选出自己已经养成的环保习惯,学校将结果绘成了如图所示的不完整的条形统计图和扇形统计图.

1)求在这次调查中,一共抽查了多少名学生?

2通过计算补全条形统计图.

3)已知全校共有学生1200人,请估计全校所有学生中已经养成3个或3个以上环保习惯的同学共有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:∠AOB90°,∠COD20°OM平分∠AOCON平分∠BOD.

1)如图1,∠COD在∠AOB内部,且∠AOC30°.则∠MON的大小为   .

2)如图1,∠COD在∠AOB内部,若∠AOC的度数未知,是否能求出∠MON的大小,若能,写出你的解答过程;若不能,说明理由.

3)如图2,∠COD在∠AOB外部(OMOD上方,∠BOC180°),试求出∠MON的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本题满分8分)

如图,点EF在BC上,BE=CF,A=D,B=C,AF与DE交于点O.

(1)求证:AB=DC;

(2)试判断OEF的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市创建绿色发展模范城市,针对境内长江段两种主要污染源:生活污水和沿江工厂污染物排放,分别用生活污水集中处理(下称甲方案)和沿江工厂转型升级(下称乙方案)进行治理,若江水污染指数记为Q,沿江工厂用乙方案进行一次性治理(当年完工),从当年开始,所治理的每家工厂一年降低的Q值都以平均值n计算.第一年有40家工厂用乙方案治理,共使Q值降低了12.经过三年治理,境内长江水质明显改善.

(1)求n的值;

(2)从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m,三年来用乙方案治理的工厂数量共190家,求m的值,并计算第二年用乙方案新治理的工厂数量;

(3)该市生活污水用甲方案治理,从第二年起,每年因此降低的Q值比上一年都增加个相同的数值a.在(2)的情况下,第二年,用乙方案所治理的工厂合计降低的Q值与当年因甲方案治理降低的Q值相等,第三年,用甲方案使Q值降低了39.5.求第一年用甲方案治理降低的Q值及a的值.

查看答案和解析>>

同步练习册答案