4£®Èçͼ£¬ÇúÏßy1Å×ÎïÏßµÄÒ»²¿·Ö£¬ÇÒ±í´ïʽΪ£ºy1=$\frac{\sqrt{3}}{3}$£¨x2-2x-3£©£¨x¡Ü3£©ÇúÏßy2ÓëÇúÏßy1¹ØÓÚÖ±Ïßx=3¶Ô³Æ£®
£¨1£©ÇóA¡¢B¡¢CÈýµãµÄ×ø±êºÍÇúÏßy2µÄ±í´ïʽ£»
£¨2£©¹ýµãC×÷CD¡ÎxÖá½»ÇúÏßy1ÓÚµãD£¬Á¬½ÓAD£¬ÔÚÇúÏßy2ÉÏÓÐÒ»µãM£¬Ê¹µÃËıßÐÎACDMΪóÝÐΣ¨Èç¹ûÒ»¸öËıßÐεÄÒ»Ìõ¶Ô½ÇÏß±»ÁíÒ»Ìõ¶Ô½ÇÏß´¹Ö±Æ½·Ö£¬ÕâÑùµÄËıßÐÎΪóÝÐΣ©£¬ÇëÇó³öµãMµÄºá×ø±ê£»
£¨3£©ÉèÖ±ÏßCMÓëxÖá½»ÓÚµãN£¬ÊÔÎÊÔÚÏß¶ÎMNÏ·½µÄÇúÏßy2ÉÏÊÇ·ñ´æÔÚÒ»µãP£¬Ê¹¡÷PMNµÄÃæ»ý×î´ó£¿Èô´æÔÚ£¬Çó³öµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©¶ÔµãA¡¢B¡¢C×ø±êµÄÒâÒåÒªÃ÷°×£¬µãAÓëµãBÊǶþ´Îº¯ÊýÓëºáÖáµÄ½»µã£¬µãCÊÇ×ÝÖáµÄ½»µã£¬¹ØÓÚx=3ÒâÒåµÄÀí½â£¬¾ÍÊǽ«y1=$\frac{{\sqrt{3}}}{3}£¨{x^2}-2x-3£©£¨x¡Ü3£©$½øÐÐÁËÆ½ÒÆ£¬´Ó¶ø¿ÉÇóµÃÅ×ÎïÏßy2µÄ½âÎöʽ£»
£¨2£©ÒªÀí½â£¬Ö»Óе±CM´¹Ö±Æ½·ÖADʱ£¬²ÅÄÜÔÚy2ÕÒµ½µãM£¬¹ÊµãM¼´ÎªÖ±Ïߣ¨CÓëADµÄÖеãPÁ¬Ïߣ©µÄ½»µã£»
£¨3£©ÏÔÈ»MNµÄÖµ¹Ì¶¨£¬¼´ÔÚy2Éϵĵ㣬µ½CMµÄ¾àÀë×î´óµÄµã£¬¼´ÓëCMƽÐеÄÖ±ÏßÓëy2Ö»ÓÐÒ»¸ö½»µãʱ£¬¼´ÎªËùÇó£®

½â´ð ½â£º£¨1£©ÔÚy1=$\frac{\sqrt{3}}{3}$£¨x2-2x-3£©ÖУ¬Áîy1=0£¬ÔòÓÐ0=$\frac{\sqrt{3}}{3}$£¨x2-2x-3£©£¬½âµÃx=-1»òx=3£¬
¡àA£¨-1£¬0£©£¬B£¨3£¬0£©£¬
ÓÖ¡ßCΪÓëyÖáµÄ½»µã£¬
¡àC£¨0£¬-$\sqrt{3}$£©£¬
ÓÖÇúÏßy2ÓëÇúÏßy1¹ØÓÚÖ±Ïßx=3¶Ô³Æ£¬
¡àÇúÏßy2¿ÉÓÉÇúÏßy1ÏòÓÒÆ½ÒÆ4¸öµ¥Î»µÃµ½£¬
¡ày2=$\frac{{\sqrt{3}}}{3}£¨{x^2}-10x+21£©$£¨x¡Ý3£©£»
£¨2£©ÈôAD´¹Ö±Æ½·ÖCM£¬Ôò¿ÉÖªCDMAΪÁâÐΣ¬´ËʱµãM£¨1£¬0£©£¬ÏÔÈ»²»ÔÚy2ÉÏ£»
¹ÊÖ±ÏßCM´¹Ö±Æ½·ÖAD£¬È¡ADÖеãP£¬Ò×ÇóÆä×ø±êΪ£¨$\frac{1}{2}$£¬-$\frac{{\sqrt{3}}}{2}$£©£¬
¹ÊÖ±ÏßCNµÄ½âÎöʽΪ£ºyCN=$\sqrt{3}x-\sqrt{3}$£¬
ÇóÆäÓëy2µÄ½»µã×ø±ê£º$\left\{\begin{array}{l}y=\sqrt{3}x-\sqrt{3}\\ y=\frac{{\sqrt{3}}}{3}£¨{x^2}-10x+21£©\end{array}$£¬
½âµÃ£ºx1=$\frac{{13+\sqrt{73}}}{2}$£¬x2=$\frac{{13-\sqrt{73}}}{2}$£¨²»ºÏÉáÈ¥£©£¬
¡àx=$\frac{{13+\sqrt{73}}}{2}$£»
£¨3£©ÒòΪMNµÄ³¤¶È¹Ì¶¨£¬¹ÊµãPµ½MNµÄ¾àÀë×î´óʱ£¬¡÷PMNµÄÃæ»ý×î´ó£¬
¡à¿ÉÉèÁíÒ»Ö±Ïßy=$\sqrt{3}$x+bÓëy2ÏཻÓÚµãP£¬ºÜÏÔÈ»ËüÃÇÖ»ÓÐÒ»¸ö½»µãʱ£¬Âú×ãÌõ¼þ£®
¼´£º$\left\{\begin{array}{l}y=\sqrt{3}x+b\\ y=\frac{{\sqrt{3}}}{3}£¨{x^2}-10x+21£©\end{array}$Ö»ÓÐΨһһ¸ö½âµÄʱºò£¬Õâ¸öµã¾ÍÊǵãP£¬
¼´·½³Ì$\sqrt{3}$x+b=$\frac{\sqrt{3}}{3}$£¨x2-10x+21£©ÓÐΨһһ¸ö½â£¬
½âµÃ£ºx=$\frac{13}{2}$£¬
½«x=$\frac{13}{2}$´úÈëy2=$\frac{{\sqrt{3}}}{3}£¨{x^2}-10x+21£©$£¬½âµÃy=-$\frac{{7\sqrt{3}}}{12}$
¹ÊµãPµÄ×ø±êΪ$£¨\frac{13}{2}£¬-\frac{{7\sqrt{3}}}{12}£©$£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²é¶þ´Îº¯ÊýµÄ×ÛºÏÓ¦Óã¬Éæ¼°¶þ´Îº¯ÊýÓëÒ»Ôª¶þ´Î·½³ÌµÄ¹ØÏµ¡¢Í¼ÏóµÄÆ½ÒÆ¡¢ÁâÐεÄÐÔÖʵÈ֪ʶµã£®ÔÚ£¨1£©ÖÐÈ·¶¨³öÇúÏßy2¿ÉÓÉÇúÏßy1¹ØÏòÓÒÆ½ÒÆ3¸öµ¥Î»µÃµ½ÊǽâÌâµÄ¹Ø¼ü£¬ÔÚ£¨2£©ÖÐÈ·¶¨³öÖ±ÏßCM´¹Ö±Æ½·ÖADÊǽâÌâµÄ¹Ø¼ü£¬ÔÚ£¨3£©ÖÐÈ·¶¨³öPµãµÄλÖÃÊǽâÌâµÄ¹Ø¼ü£®±¾Ì⿼²é֪ʶµã½Ï¶à£¬×ÛºÏÐÔÖʽÏÇ¿£¬ÄѶȽϴó£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÓÐÒ»×éÊý¾Ý£º3£¬5£¬5£¬6£¬7£¬Õâ×éÊý¾ÝµÄÖÚÊýΪ£¨¡¡¡¡£©
A£®3B£®5C£®6D£®7

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®Ê¹¶þ´Î¸ùʽ$\sqrt{5x-2}$ÓÐÒâÒåµÄxµÄȡֵ·¶Î§ÊÇx¡Ý$\frac{2}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Ä³Ð£Ñ§Éú»áÕý³ï±¸Ò»¸ö¡°Çì±ÏÒµ¡±ÎÄÒÕ»ãÑݻ£¬ÏÖ×¼±¸´Ó4Ãû£¨ÆäÖÐÁ½ÄÐÁ½Å®£©½ÚÄ¿Ö÷³ÖºòÑ¡ÈËÖУ¬Ëæ»úѡȡÁ½È˵£ÈνÚÄ¿Ö÷³ÖÈË£¬ÇëÓÃÁÐ±í·¨»ò»­Ê÷״ͼÇóÑ¡³öµÄÁ½ÃûÖ÷³ÖÈË¡°Ç¡ºÃΪһÄÐһŮ¡±µÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®·Ö½âÒòʽ£ºax2-ay2=a£¨x+y£©£¨x-y£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÓÃÅä·½·¨½âÒ»Ôª¶þ´Î·½³Ìx2-6x-10=0ʱ£¬ÏÂÁбäÐÎÕýÈ·µÄΪ£¨¡¡¡¡£©
A£®£¨x+3£©2=1B£®£¨x-3£©2=1C£®£¨x+3£©2=19D£®£¨x-3£©2=19

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®°Ña2-2a·Ö½âÒòʽ£¬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®a£¨a-2£©B£®a£¨a+2£©C£®a£¨a2-2£©D£®a£¨2-a£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èçͼ£ºÖ±ÏßAB¡¢CD½»ÓëµãO£¬¡Ï1=¡Ï2£®
£¨1£©Ö¸³ö¡Ï3µÄ¶Ô¶¥½Ç£»
£¨2£©Ö¸³ö¡Ï5µÄ²¹½Ç£»
£¨3£©¡Ï3µÄ²¹½ÇÓм¸¸ö£¿
£¨4£©Èô¡Ï1Óë¡Ï4µÄ¶ÈÊý±ÈΪ1£º4£¬Çó¡Ï3µÄ¶ÈÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®¡¾ÎÊÌâÇé¾³¡¿
Èçͼ1£¬ËıßÐÎABCDÊÇÕý·½ÐΣ¬MÊÇBC±ßÉϵÄÒ»µã£¬EÊÇCD±ßµÄÖе㣬AEƽ·Ö¡ÏDAM£®
¡¾Ì½¾¿Õ¹Ê¾¡¿
£¨1£©Ö¤Ã÷£ºAM=AD+MC£»
£¨2£©AM=DE+BMÊÇ·ñ³ÉÁ¢£¿Èô³ÉÁ¢£¬Çë¸ø³öÖ¤Ã÷£»Èô²»³ÉÁ¢£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸