【题目】将两个全等的△ABC 和△DBE 按图 1 方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点 E 落在 AB 上,DE 所在直线交 AC 所在直线于点 F.
(1)若将图 1 中的△DBE 绕点 B 按顺时针方向旋转角α,且 0°<α<60°,其它条件不变,如图 2,请你直接写出线段 AF,EF,DE 的数量关系;
(2)若将图 1 中的△DBE 绕点 B 按顺时针方向旋转角β,且 60°≤β≤180°,其它条件不变.
①如图 3,(1)中线段 AF,EF,DE 的数量关系是否仍然成立,若成立,请证明该结论;若不成立,请写出新的结论并证明.
②如图 4,AB 中点为 M,BE 中点为 N,若 BC= 2,连接 MN,当β= 度时,MN 长度最大,最大值为 (直接写出答案即可)
【答案】(1)AF+EF=DE;(2)①不成立.此时AF、EF与DE的关系为AF-EF=DE;②180,
【解析】
(1)连接BF,由△ABC≌△DBE,可得BC=BE,根据直角三角形的HL判定全等即可得出答案;
(2)①同(1)得CF=EF,由△ABC≌△DBE,可得AC=DE,即可得出答案;②先利用三角形的三边关系,判断出点M,B,N在同一条直线上时,MN最大,即可得出答案.
解:(1)AF+EF=DE
连接BF(如图①),
∵△ABC≌△DBE,
∴BC=BE,AC=DE
∵∠ACB=∠DEB=90°,
∴∠BCF=∠BEF=90°,
∵BF=BF,
∴Rt△BFC≌Rt△BFE,
∴CF=EF,
又∵AF+CF=AC,
∴AF+EF=DE;
(2)①不成立.此时AF、EF与DE的关系为AF-EF=DE,
理由:连接BF(如图③),
∵△ABC≌△DBE,
∴BC=BE,AC=DE,
∵∠ACB=∠DEB=90°,
∴∠BCF=∠BEF=90°,
又∵BF=BF,
∴Rt△BFC≌Rt△BFE,
∴CF=EF,
又∵AF-CF=AC,
∴AF-EF=DE,
∴(1)中的结论不成立,正确的结论是AF-EF=DE
②在△BMN中,BN+BM>MN
∴点M,B,N在同一条直线上时
MN最大,最大值为BN+BM
即
由(1)知,BE=BC=
∵点N是BE的中点
∴BN=BE=
在RT△ABC中,∠A=30°,BC=
∴AB=2BC=
∵点M是AB的中点
∴BM=AB=
∴MN的最大值为:BN+BM==
故答案为:180,.
科目:初中数学 来源: 题型:
【题目】在一个不透明的盒子里装有黑、白两种颜色的球共50个,这些球除颜色外其余完全相同.王颖做摸球试验,搅匀后,她从盒子里随机摸出一个球记下颜色后,再把球放回盒子中,不断重复上述过程,下表是试验中的一组统计数据:
摸球的次数 | 100 | 200 | 300 | 500 | 800 | 1000 | 3000 |
摸到白球的次数 | 65 | 124 | 178 | 302 | 480 | 601 | 1800 |
摸到白球的频率 |
(1)若从盒子里随机摸出一个球,则摸到白球的概率的估计值为______.
(2)试估算盒子里黑、白两种颜色的球各有多少个?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:对于任何数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[5]=5,[-1.5]=-2.
(1)[-π]= ;
(2)如果[a]=2,那么a的取值范围是 ;
(3)如果[]=-5,求满足条件的所有整数x;
(4)直接写出方程6x-3[x]+7=0的解.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】请把下面证明过程补充完整
如图,已知AD⊥BC于D,点E在BA的延长线上,EG⊥BC于C,交AC于点F,∠E=∠1.求证:AD平分∠BAC.
证明:∵AD⊥BC于D,EG⊥BC于G( ),
∴∠ADC=∠EGC=90°( ),
∴AD∥EG( ),
∴∠1=∠2( ),
∴_____=∠3( ),
又∵∠E=∠1(已知),∴∠2=∠3( ),
∴AD平分∠BAC( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用1块A型钢板可制成1块C型钢板、3块D型钢板;用1块B型钢板可制成2块C型钢板、1块D型钢板.
(1)现需150块C型钢板、180块D型钢板,则怡好用A型、B型钢板各多少块?
(2)若A、B型钢板共100块,现需C型钢板至多150块,D型钢板不超过204块,共有几种方案?
(3)若需C型钢板80块,D型钢板不多于45块(A型、B型钢板都要使用).求A、B型钢板各需多少块?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知点A(x,y),点B(x﹣my,mx﹣y)(其中m为常数,且m≠0),则称B是点A的“m族衍生点”.例如:点A(1,2)的“3族衍生点”B的坐标为(1﹣3×2,3×1﹣2),即B(﹣5,1).
(1)点(2,0)的“2族衍生点”的坐标为 ;
(2)若点A的“3族衍生点”B的坐标是(﹣1,5),则点A的坐标为 ;
(3)若点A(x,0)(其中x≠0),点A的“m族衍生点“为点B,且AB=OA,求m的值;
(4)若点A(x,y)的“m族衍生点”与“﹣m族衍生点”都关于y轴对称,则点A的位置在 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△ 的位置,点B,O分别落在点 , 处,点 在 轴上,再将△ 绕点 顺时针旋转到△ 的位置,点 在 轴上,将△ 绕点 顺时针旋转△ 的位置,点 在 轴上……依次进行下去。若点 ,B(0,2),则点 的坐标为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com