精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,AB=12cm,BC=6cm,∠ABC=30°,把△ABC以点B为中心按逆时针方向旋转,使点C旋转到AB边的延长线上的C′处,那么AC边扫过的图形(图中阴影部分)的面积是( )cm2 . (结果保留π)

A.15π
B.60π
C.45π
D.75π

【答案】C
【解析】解: ×(122﹣62)=45πcm2
故选:C.
【考点精析】利用扇形面积计算公式和旋转的性质对题目进行判断即可得到答案,需要熟知在圆上,由两条半径和一段弧围成的图形叫做扇形;扇形面积S=π(R2-r2);①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2﹣(2m+3)x+m2+2=0.
(1)若方程有实数根,求实数m的取值范围;
(2)若方程两实数根分别为x1、x2 , 且满足x12+x22=31+|x1x2|,求实数m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现有甲、乙两个容器,分别装有进水管和出水管,两容器的进出水速度不变,先打开乙容器的进水管,2分钟时再打开甲容器的进水管,又过2分钟关闭甲容器的进水管,再过4分钟同时打开甲容器的进、出水管.直到12分钟时,同时关闭两容器的进出水管.打开和关闭水管的时间忽略不计.容器中的水量y(升)与乙容器注水时间x(分)之间的关系如图所示.

(1)求甲容器的进、出水速度.
(2)甲容器进、出水管都关闭后,是否存在两容器的水量相等?若存在,求出此时的时间.
(3)若使两容器第12分钟时水量相等,则乙容器6分钟后进水速度应变为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某企业招聘员工,要求所要应聘者都要经过笔试与面试两种考核,且按考核总成绩从高到低进行录取,如果考核总成绩相同时,则优先录取面试成绩高分者.下面是招聘考和总成绩的计算说明:
笔试总成绩=(笔试总成绩+加分)÷2
考和总成绩=笔试总成绩+面试总成绩
现有甲、乙两名应聘者,他们的成绩情况如下:

应聘者

成绩

笔试成绩

加分

面试成绩

117

3

85.6

121

0

85.1


(1)甲、乙两人面试的平均成绩为
(2)甲应聘者的考核总成绩为
(3)根据上表的数据,若只应聘1人,则应录取

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=x2﹣4x+3与x轴交于A、B两点(点A在点B的左侧),点C是此抛物线的顶点.
(1)求点A、B、C的坐标;
(2)点C在反比例函数(k≠0)的图象上,求反比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】青少年“心理健康”问题越来越引起社会的关注,某中学为了了解学校600名学生的心理健康状况,举行了一次“心理健康”知识测试,并随即抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本,绘制了下面未完成的频率分布表和频率分布直方图.请回答下列问题:

分组

频数

频率

50.5~60.5

4

0.08

60.5~70.5

14

0.28

70.5~80.5

16

80.5~90.5

90.5~100.5

10

0.20

合计

1.00


(1)填写频率分布表中的空格,并补全频率分布直方图;
(2)若成绩在70分以上(不含70分)为心理健康状况良好,同时,若心理健康状况良好的人数占总人数的70%以上,就表示该校学生的心理健康状况正常,否则就需要加强心里辅导.请根据上述数据分析该校学生是否需要加强心里辅导,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在﹣3、﹣2、﹣1、0、1、2这六个数中,随机取出一个数,记为m,若数m使关于x的分式方程 ﹣1= 的解是正实数或零,且使得的二次函数y=﹣x2+(2m﹣1)x+1的图象,在x>1时,y随x的增大而减小,则满足条件的所有m之和是(
A.﹣2
B.﹣1
C.0
D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某网店尝试用单价随天数而变化的销售模式销售一种商品,利用30天的时间销售一种成本为10元/件的商品售后,经过统计得到此商品单价在第x天(x为正整数)销售的相关信息,如表所示:

销售量n(件)

n=50﹣x

销售单价m(元/件)

当1≤x≤20时,m=20+ x

当21≤x≤30时,m=10+


(1)请计算第几天该商品单价为25元/件?
(2)求网店销售该商品30天里所获利润y(元)关于x(天)的函数关系式;
(3)这30天中第几天获得的利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若n是一个两位正整数,且n的个位数字大于十位数字,则称n为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.
(1)写出所有个位数字是5的“两位递增数”;
(2)请用列表法或树状图,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.

查看答案和解析>>

同步练习册答案