精英家教网 > 初中数学 > 题目详情

【题目】某企业招聘员工,要求所要应聘者都要经过笔试与面试两种考核,且按考核总成绩从高到低进行录取,如果考核总成绩相同时,则优先录取面试成绩高分者.下面是招聘考和总成绩的计算说明:
笔试总成绩=(笔试总成绩+加分)÷2
考和总成绩=笔试总成绩+面试总成绩
现有甲、乙两名应聘者,他们的成绩情况如下:

应聘者

成绩

笔试成绩

加分

面试成绩

117

3

85.6

121

0

85.1


(1)甲、乙两人面试的平均成绩为
(2)甲应聘者的考核总成绩为
(3)根据上表的数据,若只应聘1人,则应录取

【答案】
(1)85.35
(2)145.6
(3)甲
【解析】解:(1)∵甲的面试成绩为85.6分,乙的面试成绩为85.1分,
∴甲、乙两人面试的平均成绩==85.35(分).
所以答案是:85.35;
(2)∵甲的笔试总成绩=(117+3)÷2=60分,面试成绩=85.6分,
∴甲应聘者的考核总成绩=60+85.6=145.6(分).
所以答案是:145.6;
(3)∵乙的笔试总成绩=121÷2=60.5分,面试成绩=85.1分,
∴甲应聘者的考核总成绩=59.5+85.1=145.6(分)=145.6分,85.6>85.1
∴应录取甲.
所以答案是:甲.
【考点精析】解答此题的关键在于理解算术平均数的相关知识,掌握总数量÷总份数=平均数.解题关键是根据已知条件确定总数量以及与它相对应的总份数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,反比例函数y=(k<0)的图象与矩形ABCD的边相交于E、F两点,且BE=2AE,E(﹣1,2).

(1)求反比例函数的解析式;
(2)连接EF,求△BEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某渔船在海面上朝正西方向以20海里/时匀速航行,在A处观测到灯塔C在北偏西60°方向上,航行1小时到达B处,此时观察到灯塔C在北偏西30°方向上,若该船继续向西航行至离灯塔距离最近的位置,求此时渔船到灯塔的距离。(结果精确到1海里,参考数据:≈1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD是矩形纸片,翻折∠B,∠D,使AD,BC边与对角线AC重叠,且顶点B,D恰好落在同一点O上,折痕分别是CE,AF,则等于(  )

A.
B.2
C.1.5
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是一个圆锥,下列平面图形既不是它的三视图,也不是它的侧面展开图的是(  )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于函数y=,下列说法错误的是(  )
A.这个函数的图象位于第一、第三象限
B.这个函数的图象既是轴对称图形又是中心对称图形
C.当x>0时,y随x的增大而增大
D.当x<0时,y随x的增大而减小

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=12cm,BC=6cm,∠ABC=30°,把△ABC以点B为中心按逆时针方向旋转,使点C旋转到AB边的延长线上的C′处,那么AC边扫过的图形(图中阴影部分)的面积是( )cm2 . (结果保留π)

A.15π
B.60π
C.45π
D.75π

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函双y= (m≠0)的阳象交于点c(n,3),与x轴、y轴分别交于点A、B,过点C作CM⊥x轴,垂足为M,若tan∠CAM= ,OA=2.
(1)求反比例函数和一次函数的解析式;
(2)点D是反比例函数图象在第三象限部分上的一点,且到x轴的距离是3,连接AD、BD,求△ABD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学校准备租用一批汽车,现有甲、乙两种大客车,甲种客车每辆载客量45人,乙种客车每辆载客量30人,已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.
(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?
(2)学校计划租用甲、乙两种客车共8辆,送330名师生集体外出活动,最节省的租车费用是多少?

查看答案和解析>>

同步练习册答案