精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函双y= (m≠0)的阳象交于点c(n,3),与x轴、y轴分别交于点A、B,过点C作CM⊥x轴,垂足为M,若tan∠CAM= ,OA=2.
(1)求反比例函数和一次函数的解析式;
(2)点D是反比例函数图象在第三象限部分上的一点,且到x轴的距离是3,连接AD、BD,求△ABD的面积.

【答案】
(1)解:∵在直角△ACM中,tan∠CAM= = ,CM=3,

∴AM=4,

∴OM=AM﹣OA=4﹣2=2.

∴n=2,

则C的坐标是(2,3).

把(2,3)代入y= 得m=6.

则反比例函数的解析式是y=

根据题意得

解得

则一次函数的解析式是y= x+


(2)解:在y= 中令y=﹣3,则x=﹣2.

则D的坐标是(﹣2,﹣3).

AD=3,

则SABD= ×3×2=3


【解析】(1)利用三角函数求得AM的长,则C的坐标即可求得,利用待定系数法求得反比例函数解析式,然后利用待定系数法求得一次函数的解析式;(2)首先求得D的坐标,然后利用三角形的面积公式求解.
【考点精析】通过灵活运用解直角三角形,掌握解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法)即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】计算:﹣+|﹣|+2sin45°+π0+(1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某企业招聘员工,要求所要应聘者都要经过笔试与面试两种考核,且按考核总成绩从高到低进行录取,如果考核总成绩相同时,则优先录取面试成绩高分者.下面是招聘考和总成绩的计算说明:
笔试总成绩=(笔试总成绩+加分)÷2
考和总成绩=笔试总成绩+面试总成绩
现有甲、乙两名应聘者,他们的成绩情况如下:

应聘者

成绩

笔试成绩

加分

面试成绩

117

3

85.6

121

0

85.1


(1)甲、乙两人面试的平均成绩为
(2)甲应聘者的考核总成绩为
(3)根据上表的数据,若只应聘1人,则应录取

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】青少年“心理健康”问题越来越引起社会的关注,某中学为了了解学校600名学生的心理健康状况,举行了一次“心理健康”知识测试,并随即抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本,绘制了下面未完成的频率分布表和频率分布直方图.请回答下列问题:

分组

频数

频率

50.5~60.5

4

0.08

60.5~70.5

14

0.28

70.5~80.5

16

80.5~90.5

90.5~100.5

10

0.20

合计

1.00


(1)填写频率分布表中的空格,并补全频率分布直方图;
(2)若成绩在70分以上(不含70分)为心理健康状况良好,同时,若心理健康状况良好的人数占总人数的70%以上,就表示该校学生的心理健康状况正常,否则就需要加强心里辅导.请根据上述数据分析该校学生是否需要加强心里辅导,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在﹣3、﹣2、﹣1、0、1、2这六个数中,随机取出一个数,记为m,若数m使关于x的分式方程 ﹣1= 的解是正实数或零,且使得的二次函数y=﹣x2+(2m﹣1)x+1的图象,在x>1时,y随x的增大而减小,则满足条件的所有m之和是(
A.﹣2
B.﹣1
C.0
D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y= 在第一象限的图象经过点B,与OA交于点P,且OA2﹣AB2=18,则点P的横坐标为(
A.9
B.6
C.3
D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某网店尝试用单价随天数而变化的销售模式销售一种商品,利用30天的时间销售一种成本为10元/件的商品售后,经过统计得到此商品单价在第x天(x为正整数)销售的相关信息,如表所示:

销售量n(件)

n=50﹣x

销售单价m(元/件)

当1≤x≤20时,m=20+ x

当21≤x≤30时,m=10+


(1)请计算第几天该商品单价为25元/件?
(2)求网店销售该商品30天里所获利润y(元)关于x(天)的函数关系式;
(3)这30天中第几天获得的利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,∠ABC的平分线交AC于点D,点O是AB上一点,⊙O过B、D两点,且分别交AB、BC于点E、F.
(1)求证:AC是⊙O的切线;
(2)已知AB=10,BC=6,求⊙O的半径r.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:﹣12+| |+(π﹣3.14)0﹣tan60°+

查看答案和解析>>

同步练习册答案