精英家教网 > 初中数学 > 题目详情

【题目】计算:﹣+|﹣|+2sin45°+π0+(1

【答案】解:原式=﹣2++2×+1+2=3.
【解析】原式第一项化为最简二次根式,第二项利用绝对值的代数意义化简,第三项利用特殊角的三角函数值计算,第四项利用零指数幂法则计算,最后一项利用负整数指数幂法则计算即可得到结果。
【考点精析】根据题目的已知条件,利用零指数幂法则和整数指数幂的运算性质的相关知识可以得到问题的答案,需要掌握零次幂和负整数指数幂的意义: a0=1(a≠0);a-p=1/ap(a≠0,p为正整数);aman=am+n(m、n是正整数);(amn=amn(m、n是正整数);(ab)n=anbn(n是正整数);am/an=am-n(a不等于0,m、n为正整数);(a/b)n=an/bn(n为正整数).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=a(x﹣1)(x﹣4)与x轴相交于点A、B(点A在点B的左侧),与x轴相交于点C,点D在线段CB上(点D不与B、C重合),过点D作CA的平行线,与抛物线相交于点E,直线BC的解析式为y=kx+2.

(1)抛物线的解析式为
(2)求线段DE的最大值;
(3)当点D为BC的中点时,判断四边形CAED的形状,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,反比例函数y=(k<0)的图象与矩形ABCD的边相交于E、F两点,且BE=2AE,E(﹣1,2).

(1)求反比例函数的解析式;
(2)连接EF,求△BEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一次800米的长跑比赛中,甲、乙两人所跑的路程s(米)与各自所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,则下列说法正确的是(  )

A.甲的速度随时间的增加而增大
B.乙的平均速度比甲的平均速度大
C.在起跑后第180秒时,两人相遇
D.在起跑后第50秒时,乙在甲的前面

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形OABC中,OA=5,AB=4,点D为边AB上一点,将△BCD沿直线CD折叠,使点B恰好落在边OA上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系.

(1)求OE的长及经过O,D,C三点抛物线的解析式;
(2)一动点P从点C出发,沿CB以每秒2个单位长度的速度向点B运动,同时动点Q从E点出发,沿EC以每秒1个单位长度的速度向点C运动,当点P到达点B时,两点同时停止运动,设运动时间为t秒,当t为何值时,DP=DQ;
(3)若点N在(1)中抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使M,N,C,E为顶点的四边形是平行四边形?若存在,请求出M点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.

(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,证明:①AC′=BD′;②AC′⊥BD′;
(2)如图2,若△AOB为任意三角形且∠AOB=θ,CD∥AB,AC′与BD′交于点E,猜想∠AEB=θ是否成立?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某渔船在海面上朝正西方向以20海里/时匀速航行,在A处观测到灯塔C在北偏西60°方向上,航行1小时到达B处,此时观察到灯塔C在北偏西30°方向上,若该船继续向西航行至离灯塔距离最近的位置,求此时渔船到灯塔的距离。(结果精确到1海里,参考数据:≈1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD是矩形纸片,翻折∠B,∠D,使AD,BC边与对角线AC重叠,且顶点B,D恰好落在同一点O上,折痕分别是CE,AF,则等于(  )

A.
B.2
C.1.5
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函双y= (m≠0)的阳象交于点c(n,3),与x轴、y轴分别交于点A、B,过点C作CM⊥x轴,垂足为M,若tan∠CAM= ,OA=2.
(1)求反比例函数和一次函数的解析式;
(2)点D是反比例函数图象在第三象限部分上的一点,且到x轴的距离是3,连接AD、BD,求△ABD的面积.

查看答案和解析>>

同步练习册答案