精英家教网 > 初中数学 > 题目详情
4.计算:
(1)3$\sqrt{48}$-9$\sqrt{\frac{1}{3}}$+3$\sqrt{12}$;
(2)(5+2$\sqrt{3}$)(2-2$\sqrt{3}$);
(3)($\frac{1}{\sqrt{5}}$+$\sqrt{20}$-3$\sqrt{5}$)×$\sqrt{10}$.

分析 (1)先把各二次根式化为最简二次根式,然后合并即可;
(2)利用多项式乘法公式展开,然后合并即可;
(3)先根据二次根式的乘除法则运算,然后化简后合并即可.

解答 解:(1)原式=12$\sqrt{3}$-3$\sqrt{3}$+6$\sqrt{3}$
=15$\sqrt{3}$;
(2)原式=10-10$\sqrt{3}$+4$\sqrt{3}$-12
=-2-6$\sqrt{3}$;
(3)原式=$\sqrt{2}$+10$\sqrt{2}$-15$\sqrt{2}$
=-4$\sqrt{2}$.

点评 本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

14.下列能判定四边形是平行四边形的有(  )
A.一组对边相等,一组对角也相等
B.一组对边相等,一条对角线被另一条平分
C.一组对角相等,一条对角线被另一条平分
D.一组对角相等,过这组对角的顶点的对角线平分另一条对角线

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,CD是⊙O的直径,弦AB⊥CD于点E,且AB=2$\sqrt{2}$,DE=2-$\sqrt{2}$.
(1)求⊙O的直径.
(2)过点B作⊙O的切线BF,交CD的延长线于点F,求OF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图①,在Rt△ABO中,∠A=90°,AB=2,AO=4,⊙O的半径为1,点C为BO的中点,点H为⊙O上一点,CH=2
(1)求证;CH是⊙O的切线;
(2)如图②,过C作CD⊥CH交AO于D点,求tan∠ODC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.
(1)求证:直线CP是⊙O的切线;
(2)若BC=2$\sqrt{5}$,sin∠BCP=$\frac{\sqrt{5}}{5}$,求点B到AC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.(1)一根木杆按如图①所示的方式直立在地面上,请在图中画出它在阳光下的影子(用线段MN表示).
(2)图②是两根标杆及它们在灯光下的影子,请在图中画出光源的位置(用点P表示),并画出人在此光源下的影子(用线段EF表示).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.“$\frac{16}{49}$的平方根是±$\frac{4}{7}$”用数学式表示为(  )
A.$\sqrt{\frac{16}{49}}$=±$\frac{4}{7}$B.$\sqrt{\frac{16}{49}}$=$\frac{4}{7}$C.±$\sqrt{\frac{16}{49}}$=±$\frac{4}{7}$D.-$\sqrt{\frac{16}{49}}$=-$\frac{4}{7}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.直线MN表示一条河流的河岸,在河流同旁有A、B两个村庄,现要在河边修建一个供水站给A、B供水.问:这个供水站建在什么地方,可以使铺设管道最短?请在图中找出表示供水站的点P.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,已知l1∥l2,l3和直线l1,l2分别交于A、B两点,点P在直线AB.
(1)如过点P在A、B两点之间运动,试探究∠1、∠2、∠3之间的关系,并证明.
(2)如果点P在A、B两点外侧运动(不与A、B重合),试探究∠1、∠2、∠3之间的关系,并证明.

查看答案和解析>>

同步练习册答案