精英家教网 > 初中数学 > 题目详情
19.如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.
(1)求证:直线CP是⊙O的切线;
(2)若BC=2$\sqrt{5}$,sin∠BCP=$\frac{\sqrt{5}}{5}$,求点B到AC的距离.

分析 (1)利用直径所对的圆周角为直角,2∠CAN=∠CAB,∠CAB=2∠BCP判断出∠ACP=90°即可;
(2)利用锐角三角函数,即勾股定理即可.

解答 (1)证明:∵∠ABC=∠ACB,
∴AB=AC,
∵AC为⊙O的直径,
∴∠ANC=90°,
∴∠CAN+∠ACN=90°,2∠BAN=2∠CAN=∠CAB,
∵∠CAB=2∠BCP,
∴∠BCP=∠CAN,
∴∠ACP=∠ACN+∠BCP=∠ACN+∠CAN=90°,
∵点D在⊙O上,
∴直线CP是⊙O的切线;
(2)如图,作BF⊥AC

∵AB=AC,∠ANC=90°,
∴CN=$\frac{1}{2}$CB=$\sqrt{5}$,
∵∠BCP=∠CAN,sin∠BCP=$\frac{\sqrt{5}}{5}$,
∴sin∠CAN=$\frac{\sqrt{5}}{5}$,
∴$\frac{CN}{AC}=\frac{\sqrt{5}}{5}$,
∴AC=5,
∴AB=AC=5,
设AF=x,则CF=5-x,
在Rt△ABF中,BF2=AB2-AF2=25-x2
在Rt△CBF中,BF2=BC2-CF2=2O-(5-x)2
∴25-x2=2O-(5-x)2
∴x=3,
∴BF2=25-32=16,
∴BF=4,
即点B到AC的距离为4.

点评 此题是切线的判定,主要考查了切线的判定定理,勾股定理得应用,构造出直角三角形Rt△ABF和Rt△CBF是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.如图,在⊙O中,圆心角∠AOB=120°,⊙O′与OA、OB相切于点C、D,与$\widehat{AB}$相切于F,求$\widehat{AB}$的长与⊙O′的周长的比.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,已知直线l1,l2,l3被直线l所截,∠1=72°,∠2=108°,∠3=72°,试说明l1∥l2∥l3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.已知圆上一段弧长为4πcm,它所对的圆心角为100°,求该圆的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.对于两个二次函数y1,y2,满足y1+y2=2x2+2$\sqrt{3}$x+8,当x=m时,二次函数y1的函数值为5,且二次函数y2有最小值3,请写出两个符合题意的二次函数y2的解析式${y}_{2}={x}^{2}+3$或${y}_{2}=(x+\sqrt{3})^{2}+3$(要求:写出的解析式的对称轴不能相同)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.计算:
(1)3$\sqrt{48}$-9$\sqrt{\frac{1}{3}}$+3$\sqrt{12}$;
(2)(5+2$\sqrt{3}$)(2-2$\sqrt{3}$);
(3)($\frac{1}{\sqrt{5}}$+$\sqrt{20}$-3$\sqrt{5}$)×$\sqrt{10}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,为了估算河的宽度,我们可以在河对岸选定一个目标点A,再在河岸的这一边选取点B和点C,使AB⊥BC,然后再选取点E,使EC⊥BC,用视线确定BC和AE的交点D,此时如果测得BD=160m,DC=80m,EC=50m,求A、B间的大致距离.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.求下列各式的值.
(1)-$\sqrt{(-25)^{2}}$
(2)$\sqrt{169}$+$\sqrt{144}$
(3)$\sqrt{{8}^{2}+1{5}^{2}}$
(4)$\sqrt{1-\frac{9}{25}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图所示,请写出一个条件∠B=∠BCG,使AB∥FG.

查看答案和解析>>

同步练习册答案